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Abstract

The MIRACL library consists of well over 100 routines that cover all aspects of multi-
precision arithmetic. Two new data-types are defined — big for large integers and
flash (short for floating-slash) for large rational numbers. The large integer routines
are based on Knuth’s algorithms, described in Chapter 4 of his classic work ‘The Art
of Computer Programming’. Floating-slash arithmetic, which works with rounded
fractions, was originally proposed by D. Matula and P. Kornerup. All routines have
been thoroughfully optimised for speed and efficiency, while at the same time re-
maining standard, portable C. However optional fast assembly language alternatives
for certain time-critical routines are also included, particularly for the popular Intel
80x86 range of processors. A C++ interface is also provided. Full source code is
included.



Chapter 1

Introduction

Remember when as a naive young computer user, you received delivery of your
brand new state-of-the-art micro; remember your anticipation at the prospect
of the computer power now available at your fingertips; remember recalling
all those articles which promised that ‘todays microcomputers are as powerful
as yesterday’s mainframes’. Remember then slowly and laboriously typing in
your first program, to calculate, say, 1000! (i.e. 1000 x 999 x 998 x ... x 1) —
a calculation unimaginable by hand.

10 LET X=1

20 FOR I=1 TO 1000
30 X=Xx*I

40 NEXT I

50 PRINT X

60 END

RUN
After a few seconds the result appeared:
Too big at line 30

Remember your disappointment.

Now try the MIRACL approach. MIRACL is a portable C library which implements
multiprecision integer and rational data-types, and provides the routines to perform
basic arithmetic on them.

Run the program fact from the distribution media, and type in 1000. There is your
answer — a 2568 digit number.

Now compile and run the program roots, and ask it to calculate the square root of 2.
Virtually instantly your computer comes back with the value correct to 100+ decimal
places. Now thats what I call computing!

Next run the Public Key Cryptography program enciph. When it asks the name
of a file to be enciphered press return. When it asks for an output filename, type



FRED followed by return. Now type in any message, finishing with CONTROL-Z. Your
message has been thoroughly enciphered in the file FRED.BLG (type it out and see).
Now run deciph, and type in FRED. Press return for the requested output filename.
Your original message appears on the screen.

This type of encipherment, based as it is on the difficulty of factoring large numbers,
offers much greater security and flexibility than more traditional methods.

A useful demonstration of the power of MIRACL is given by the program ratcalc, a
powerful scientific calculator — accurate to 36 decimal places and with the unusual
ability to handle fractions directly.

It is assumed in this manual that the reader is familiar with the C language, and with
his/her own computer. On a first reading Chapters and |§| may be safely skipped.
Examination of the example programs’ source code will be very rewarding.



Chapter 2

Installation

The MIRACL library has been successfully installed on a VAX11/780, on a variety of
UNIX workstations (Sun, SPARC, Next, IBM RS/6000), on an IBM PC using the
Microsoft C and C++ compilers, Borlands Turbo C and Borland C++ compilers, the
Watcom C compiler and the DJGPP GNU compiler; on ARM based computers, and
on an Apple Macintosh. Recently it has been implemented on Itanium and AMD
64-bit processors.

The complete source code for each module in the MIRACL library, and for each of
the example programs is provided on the distribution media. Most are written in
Standard ANSI C, and should compile using any decent ANSI C compiler. Some
modules contain extensive amounts of in-line assembly language, used to optimise
performance for certain compiler/processor combinations. However these are invoked
transparently by conditional compilation commands and will not interfere with other
compilers. The batch files xxdoit.xxx contain the commands used for the creation of
a library file and the example programs for several compilers. Print out and examine
the appropriate file for your configuration.

Pre-compiled libraries for immediate use with certain popular compilers may be found
on the distribution media: ready-to-run versions of only some of the example pro-
grams may be included, to conserve space.

To create a library you will need access to a compiler, a text editor, a linker, a
librarian utility, and an assembler (optional). Read your compiler documentation
for further details. The file mrmuldv.any, which contains special assembly language
versions of the time-critical routines muldiv, muldvd, muldvd2 and muldvm together
with some portable C versions, which may need to be tailored for your configuration.
These modules are particularly required if the compiler does not support a double
length type which can hold the product of two word-length integers. Most modern
compilers do provide this support (often the double length type is called long long),
and in this case it is often adequate to use the standard C version of this module
mrmuldv.ccc which can simply be copied to mrmuldv.c. Read this manual carefully,
and the comments in mrmuldv.any for more details.

The hardware/compiler specific file mirdef.h needs to be specified. To assist with
this, five example versions of the header are supplied: mirdef.h16 for use with a 16-bit
processor, mirdef.h32 for 32-bit processors, mirdef.haf if using a 32-bit processor in
a 16-bit mode, and mirdef.hpc for pseudo 32-bit working in a 16-bit environment.
Note that the full 32-bit version is fastest, but only possible if using a true 32-bit
compiler with a 32-bit processor. Try mirdef.gcc for use with gcc and g++ in a Unix
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environment (no assembler).

To assist with the configuration process, a file config.c is provided. When compiled
and run on the target processor it automatically generates a mirdef.h file and gives
general advice on configuration. It also generates a miracl.lst file with a list of MIRACL
modules to be included in the associated library build. Experimentation with this
program is strongly encouraged. When compiling this program DO NOT use any
compiler optimization.

The mirdef.h file contains some optional definitions: Define MR_NOFULLWIDTH if you
are unable to supply versions of muldvd, muldvd2 and muldvm in mrmuldv.c. De-
fine MR_FLASH if you wish to use flash variables in your programs. Either one of
MR_LITTLE_ENDIAN or MR_BIG_ENDIAN must be defined. The config.c program auto-
matically determines which is appropriate for your processor.

By omitting the MR_FLASH definition big variables can be made much larger, and the
library produced will be much smaller, leading to more compact executables. Define
MR_STRIPPED_DOWN to omit error messages, to save even more space in production
code. Use with care!

If you dont want any assembler, define MR_NOASM. This generates standard C code
for the four time-critical routines, and generates it in-line. This is faster — saves on
function calling overhead — and also gives an optimising compiler something to chew
on. Note that if MR_NOASM is defined, then the mrmuldv module is not required in the
MIRACL library.

If using the Microsoft Visual C++ tool, some helpful advice can be found in the file
msvisual.txt. If using the Linux operating system, check out linux.txt. Users of the
Borland compiler should look at borland.txt.

In the majority of cases where pre-built libraries or specific advice in a .txt file is
not available, the following procedure will result in a successful build of the MIRACL
library:

1. Compile and run config.c on the target processor.
2. Rename the generated file mirdef.tst to mirdef.h

3. If so advised by the config program, extract a suitable mrmuldv.c file from
mrmuldv.any (or copy the standard C version mrmuldv.ccc to mrmuldv.c and
use this). If it is pure assembly language it may be appropriate to name it
mrmuldv.s or mrmuldv.asm.

4. If the fast KCM or Comba methods for modular multiplication were selected
(see below), compile and run the mex.c utility on any workstation. Use it to
automatically generate either the module mrcomba.c or mrkecm.c. This will
require a processor/compiler-specific xxx.mcs file. The compiler must support
inline assembly.

5. Make sure that all the MIRACL header files are accessible to the compiler.
Typically the flag -I. or /I. allows these headers to be accessed from the
current directory.

6. Compile the MIRACL modules listed in the generated file miracl.Ist and create
a library file, typically miracl.a or miracl.lib. This might be achieved by editing
miracl.Ist into a suitable batch or make file. On UNIX it might be as simple as:

gcc -I. -c -02 mr*.c
ar rc miracl.a mr*.o

7. If using the C++ MIRACL wrapper, compile the required modules, for example
zzn.cpp and/or big.cpp etc.



8. Compile and link your application code to any C++ modules it requires and
to the MIRACL library.

Remember that MIRACL is portable software. It may be ported to any computer
which supports an ANSI C compiler.

Note that MIRACL is a C library, not C++. It should always be built as a C library
otherwise you might get compiler errors. To include MIRACL routines in a C program,
include the header miracl.h at the start of the program, after including the C standard
header stdio.h. You may also call MIRACL routines directly from a C++ program by:

extern "C"

{

#include "miracl.h"

}

although in most cases it will be preferable to use the C++ wrapper classes described
in Chapter [7]

2.1 Optimising

In the context of MIRACL this means speeding things up. A critical decision to be
made when configuring MIRACL is to determine the optimal underlying type to use.
Usually this will be the int type. In general try to define the maximum possible
underlying type, as requested by config. If you have a 64-bit processor, you should
be able to specify a 64-bit underlying type. In some circumstances it may be faster
to use a floating-point double underlying type.

Obviously an all-C build of MIRACL will be slowest (but still pretty fast!). It is also
the easiest to start with. This requires an integer data type twice the width of the
underlying type. In this context note that these days most compilers support a long
long integer type which is twice the width of the int. Sometimes it is called __int64
instead of long long.

If your processor is of the extreme RISC variety and supports no integer multipli-
cation/division instruction, or if using a very large modulus, then the Karatsuba-
Montgomery-Comba technique for fast modular multiplication may well be faster for
exponentiation cryptosystems. Again the config program will guide you through this.

It is sometimes faster to implement the mrmuldv module in assembly language. This
does not require the double-width data type. If you are lucky your compiler will also
be supported by automatically invoked inline assembly, which will speed things up
even further. See miracl.h to see which compilers are supported in this way.

For the ultimate speed, use the extreme techniques implemented in mrkcm.c, mr-
comba.c. See kemcomba.txt for instructions on how to automatically generate these
files using the supplied mex utility. See also Chapter [f] for more details.

2.2 Upgrading from Version 3

Version 4.0 introduces the MIRACL Instance Pointer, or mip. Previous versions used
a number of global and static variables to store internal status information. There are



two problems with this. Firstly such globals have to be given obscure names to avoid
clashes with other project globals. Secondly it makes multi-threaded applications
much more difficult to develop. So from Version 4.0 all such variables, now referred
to as instance variables, are members of a structure of type miracl, and must be
accessed via a pointer to an instance of this structure. This global pointer is now the
only static/global variable maintained by the MIRACL library. Its value is returned
by the mirsys routine, which initialises the MIRACL library.

C++ programmers should note the change in the name of the instance class from
miracl to Miracl. The mip can be found by taking the address of this instance.

Miracl precision = 50;
mip = &precision;

etc

2.3 Multi-Threaded Programming

From version 4.4 MIRACL offers full support for multi-threaded programming. This
comes in various flavours.

The problem to be overcome is that MIRACL has to have access to a lot of instance
specific status information via its mip. Ideally there should be no global variables, but
MIRACL has this one pointer. Unfortunately every thread that uses MIRACL needs
to have its own mip, pointing to its own independent status. This is a well-known
issue that arises with threads.

The first solution is to modify MIRACL so that the mip, instead of being a global,
is passed as a parameter to every MIRACL function. The MIRACL routines can be
automatically modified to support this by defining MR_GENERIC_MT in mirdef.h. Now
(almost all) MIRACL routines are changed such that the mip is the first parameter
to each function. Some simple functions are exceptions and do not require the mip
parameter — these are marked with an asterix in the reference manual'. For an
example of a program modified to work with a MIRACL library built in this way, see
the program brent_mt.c. Note however that this solution does NOT apply to programs
written using the MIRACL C++ wrapper described in Chapter [7} It only applies to
C programs that access the MIRACL routines directly.

An alternative solution is to use Keys, which are a type of thread specific “global”
variable. These Keys are not part of the C/C++ standard, but are operating system
specific extensions, implemented via special function calls. MIRACL provides support
for both Microsoft Windows and Unix operating systems. In the former case these
Keys are called Thread-Local Storage. See [Richter] for more information. For Unix
MIRACL supports the POSIX standard interface for multithreading. A very useful
reference for both Windows and Unix is [Walmsley]. This support for threads is
implemented in the module mrcore.c, at the start of the file and in the initialisation
routine mirsys.

For Windows, define MR_WINDOWS_MT in mirdef.h, and for Unix define MR_UNIX MT. In
either case there are some programming implications.

IReview this.



In the first place the Key that is to maintain the mip must be initialised and ultimately
destroyed by the programs primary thread. These functions are carried out by calls
to the special routines mr_init_threading and mr_end_threading respectively.

In C++ programs these functions might be associated with the constructor and de-
structor of a global variable [Walmsley] — this will ensure that they are called at the
appropriate time before new threads are forked off from the main thread. They must
be called before any thread calls mirsys either explicitly, or implicitly by creating a
thread-specific instance of the class Miracl.

It is strongly recommended that program development be carried out without support
for threads. Only when a program is fully tested and debugged should it be converted
into a thread.

Threaded programming may require other OS-specific measures, in terms of linking
to special libraries, or access to special heap routines. In this regard it is worth
pointing out that all MIRACL heap accesses are via the module mralloc.c.

See the example program threadwn.cpp for an example of Windows C++ multithread-
ing. Read the comments in this program — it can be compiled and run from a Win-
dows Command prompt. Similarly see threadux.cpp for an example of Unix multi-
threading.

2.4 Constrained environments

In version 5 of MIRACL there is new support for implementations in very small and
constrained environments. Using the config utility it is now possible to allow various
time/space trade-offs, but the main innovation is the possibility of building and using
MIRACL in an environment which does not support a heap. Normally space for big
variables is obtained from the heap, but by specifying in the configuration header
MR_STATIC, a version of the library is built which will always attempt to allocate
space not from the heap, but from static memory or from the stack.

The main downside to this is that the maximum size of big variables must be set at
compile time, when the library is being created. As always it is best to let the config
utility guide you through the process of creating a suitable mirdef.h configuration
header.

For the C programmer, the allocation of memory from the stack for big variables
proceeds as follows.

big x, y, z;
char mem[MR_BIG_RESERVE(3)];
memset (mem, 0, MR_BIG_RESERVE(3));

This allocates space for 3 big variables on the stack, and set that memory to zero.
Each individual big variable is then initialised as

x = mirvar_mem(mem, O0);
mirvar_mem(mem, 1);
mirvar_mem(mem, 2);

<
]

N
]

Allocating all the space for multiple big variables from a single chunk of memory
makes sense, as it leads to a faster initialization, and also gives complete control over



variable alignment, which compilers sometimes get wrong. Note that in this mode the
usual big number initialization function mirvar is no longer available, and allocation
must be implemented as described above.

Finally this memory chunk may optionally be cleared before leaving a function by a
final call to memset () — this may be important for security reasons. For an example
see the program brent.c.

This mechanism may be particularly useful when trying to implement a very small
program using elliptic curves, which anyway require much smaller big numbers than
other cryptographic techniques. To allocate memory from the stack for an elliptic
curve point

epoint *x, *y, *z;
char mem[MR_ECP_RESERVE(3)];
memset (mem, 0, MR_ECP_RESERVE(3));

To initialize these points

X = epoint_init_mem(mem, O);
epoint_init_mem(mem, 1);
epoint_init_mem(mem, 2);

<
]

N
]

Again it may be advisable to clear the memory associated with these points before
exiting the function.

This mechanism is fully supported for C4++ programs as well, where it works in
conjunction with the stack allocation method described in chapterm See pk-demo.cpp
for an example of use.

In some extreme cases it may be desired to use only the stack for all memory alloca-
tion. This allows maximum use and re-use of memory, and avoids any fragmentation
of precious RAM. This can be achieved for C programs by defining MR_.GENERIC_MT in
mirdef.h. See above for more details on this option.

A typical mirdef.h header in this case might look like:

/*

*  MIRACL compiler/hardware definitions - mirdef.h
*  Copyright (c) 1988-2005 Shamus Software Ltd.

*/

#define MR_LITTLE_ENDIAN

#define MIRACL 32

#define mr_utype int

#define MR_IBITS 32

#define MR_LBITS 32

#define mr_unsign32 unsigned int
#define mr_dltype __int64

#define mr_unsign64 unsigned __int64
#define MR_STATIC 7

#define MR_ALWAYS_BINARY

#define MR_NOASM

#define MAXBASE ((mr_small)1<<(MIRACL-1))



#define MR_BITSINCHAR 8
#define MR_SHORT_OF_MEMORY
#define MR_GENERIC_MT
#define MR_STRIPPED_DOWN

For examples of programs which use this kind of header, see ecsgen_s.c, ecsign_s.c
and ecsver_s.c, and ecsgen2s.c, ecsign2s.c and ecsver2s. These programs implement
very small and fast ECDSA key generation, digital signature, and verification on
a Pentium using Microsoft C++. See ecdh.c for another nice example, which uses
precomputation to speed up an EC Diffie-Hellman implementation.

NOTE: Doing without a heap is a little problematical. Structures can no longer
be of variable size, and so various features of MIRACL become unavailable in this
mode. For example precomputations such as required for application of the Chinese
remainder theorem are no longer supported. However in a constrained environment
it could be reasonably assumed that such precomputations are carried out off-line,
and made available to the constrained program fixed in ROM.

The MIRACL modules are carefully designed so that an application will only pull in
the minimal number of modules from the library for any given task. This helps to
keep the program size down to a minimum. However if program size is a big issue
then extra savings can sometimes be made by manually deleting from the modules
functions that are not needed by your particular program (the linker will complain if
the function is in fact needed).

2.5 Platform-specific information

AMDG64

The AMD64 processor is now fully supported using Intel GCC Compiler.
Use a header file like

#define MR_LITTLE_ENDIAN

#define MIRACL 64

#define mr_utype long

#define MR_IBITS 32

#define MR_LBITS 64

#define mr_unsign32 unsigned int

#define mr_unsign64 unsigned long
#define MR_FLASH 52

#define MAXBASE ((mr_small)1<<(MIRACL-1))
#define BITSINCHAR 8

and use assembly language file mrmuldv.s64.

Note that the above header file assumes an LP64-compatible compiler. For an LLP64
compiler, change mr_utype to a 64-bit long long or __int64.

There is also a macro file amd64.mcs — see kemcomba.txt and makemcs.txt. However
when we tried it the -02 optimizer was broken when compiling mrcomba.c or mrkcm.c.

To build the MIRACL library, extract below into a file amd64 and execute



bash amd64

Contents of amd64 should be

rm miracl.a

gecec -I. -c
gcc -I. -c
gce -I. —c
gecec -I. -c
gcc -I. -c
gce -I. -c
gecec -I. -c
gcc -I. -c
gce -I. —c
gcec -I. -c
gcc -I. -c
gcec -I. -c
gecec -I. -c
gcec -I. -c
gcec -I. -c
gcec -I. -c
gcec -I. -c
gce -I. -c
gecec -I. -c
gcec -I. -c
gce -I. -c
gcec -I. -c
gcec -I. -c
gce -I. -c
gcec -I. -c
gcec -I. -c
gce -I. -c
gcec -I. -c
gcc -I. -c
gce -I. -c
gcec -I. -c
gcc -I. -c
gcec -I. -c
gce -I. -c
gcec -I. -c
gce -I. -c
gcec -I. -c
gce -I. -c
gce -I. -c
as mrmuldv.
ar

ar r miracl.
ar r miracl.
ar r miracl.
ar r miracl.
ar r miracl.
ar r miracl.
gce -I. -02

-02 mrcore.c
-02 mrarthO.
-02 mrarthil.
-02 mrarth2.
-02 mralloc.
-02 mrsmall.
-02 mriol.c
-02 mrio2.c
-02 mrgcd.c
-02 mrjack.c
-02 mrxgcd.c
-02 mrarth3.c
-02 mrrand.c

-02 mrprime.c
-02 mrcrt.c

-02 mrscrt.c

-02 mrmonty.c
-02 mrpower.c
-02 mrcurve.c
-02 mrfast.c

-02 mrshs.c

-02 mrshs256.c
-02 mrshsb512.c
-02 mraes.c

-02 mrlucas.c
-02 mrstrong.c

O o o o o0

-02 mrbrick.c
-02 mrebrick.c
-02 mrecgf2m.c
-02 mrflash.c
-02 mrfrnd.c
-02 mrdouble.c
-02 mrround.c
-02 mrbuild.c
-02 mrflshl.c
-02 mrpi.c

-02 mrflsh2.c
-02 mrflsh3.c
-02 mrflsh4.c
s64 -o mrmuldv.o

rc miracl.a mrcore.o mrarthO.o mrarthl.o mrarth2.o mralloc.o mrsmall.o

rm mr*.o

mriol.o mrio2.o0 mrjack.o mrgcd.o mrxgcd.o mrarth3.o

mrrand.o mrprime.o mrcrt.o mrscrt.o mrmonty.o mrcurve.o

mrpower.o mrfast.o mrshs.o mrshs256.0 mraes.o mrlucas.o mrstrong.o
mrflash.o mrfrnd.o mrdouble.o mrround.o mrbuild.o

mrflshl.o mrpi.o mrflsh2.o0 mrflsh3.o mrflsh4.o

mrbrick.o mrebrick.o mrecgf2m.o mrshs512.0 mrmuldv.o

factor.c miracl.a -1m -o factor

a
a
a
a
a
a



ARM

If developing for the ARM, or indeed any other new processor, you should first build
a C-only library.

For the ARM, this mirdef.h header would be appropriate for an integer-only build of
the library.

/*

*  MIRACL compiler/hardware definitions - mirdef.h
*  Copyright (c) 1988-2001 Shamus Software Ltd.

*/

#define MIRACL 32
#define MR_LITTLE_ENDIAN

/* or possibly
#define MR_BIG_ENDIAN
*/

#define mr_utype int

#define MR_IBITS 32

#define MR_LBITS 32

#define mr_dltype long long

#define mr_unsign32 unsigned int

#define mr_unsign64 unsigned long long
#define MAXBASE ((mr_small)1<<(MIRACL-1))

#define MR_NOASM

Assuming that the mirdef.h, miracl.h and mr*.c files are all in the same directory, then
a suitable batch file for building a MIRACL library might look like this:

armcc -I. -c -02 mrcore.c
armcc -I. -c -02 mrarthO.
armcc -I. -c -02 mrarthl.
armcc -I. -c -02 mrarth2.
armcc -I. -c -02 mralloc.
armcc -I. -c -02 mrsmall.
armcc -I. -c¢ -02 mriol.c
armcc -I. -c -02 mrio2.c
armcc -I. -c -02 mrgcd.c
armcc -I. -c -02 mrjack.c
armcc -I. -c -02 mrxgcd.c
armcc -I. -c -02 mrarth3.c
armcc -I. -c -02 mrrand.c
armcc -I. -c -02 mrprime.c
armcc -I. -c -02 mrcrt.c

armcc -I. -c -02 mrscrt.c
armcc -I. -c -02 mrmonty.c
armcc -I. -c -02 mrpower.c
armcc -I. -c¢ -02 mrsroot.c
armcc -I. -c -02 mrcurve.c

O o0 o oo



armcc -I. -c -02 mrfast.c

armcc -I. -c -02 mrshs.c

armcc -I. -c -02 mrshs256.c

armcc -I. -c -02 mrshs512.c

armcc -I. -c -02 mraes.c

armcc -I. -c -02 mrlucas.c

armcc -I. -c -02 mrstrong.c

armcc -I. -c -02 mrbrick.c

armcc -I. -c -02 mrebrick.c

armcc -I. -c -02 mrecgf2m.c

armar rc miracl.a mrcore.o mrarthO.o mrarthl.o mrarth2.o mralloc.o

armar r miracl.a mrsmall.o mriol.o mrio2.o mrjack.o mrgcd.o mrxgcd.o

armar r miracl.a mrarth3.o mrrand.o mrprime.o mrcrt.o mrscrt.o

armar r miracl.a mrmonty.o mrcurve.o mrfast.o mrshs.o mraes.o mrlucas.o

armar r miracl.a mrstrong.o mrbrick.o mrebrick.o mrecgf2m.o mrpower.o
r a

armar miracl.a mrsroot.o mrshs256.0 mrshs512.0
del mr*.o
armcc -I. -c pk-demo.c

armlink pk-demo.o miracl.a -o pk-demo.axf

This may be fast enough for you. If its not you can use the assembly language macros
provided in arm.mcs or gccarm.mcs for greater speed. See kemcomba.txt.

For faster RSA and DH implementations replace the MR_NOASM definition with MR_KCM
n (where n is usually 4, 8 or 16 — experiment. n*MIRACL must divide the modulus size
in bits exactly, which it will for standard moduli of 1024 bit for example). Compile
and run the utility mex.c

mex n arm mrkcm

(Yes, it’s the same n). Rebuild the MIRACL library, but this time include the modules
mrkecm.c and mrmuldv.c (you can find the latter in mrmuldv.ccc. This standard C
version will do.)

For fast GF(p) elliptic curves, replace MR_NOASM with MR_COMBA n. This time 32*n is
exactly the size of p in bits (assuming 32-bit processor).

This approach is also optimal for 1024-bit RSA decryption using the Chinese Re-
mainder Theorem. Set n=16 (512 = 16 x 32)

mex n arm mrcomba

Rebuild the MIRACL library, but this time include the modules mrcomba.c and mr-
muldv.c.

Still not fast enough? If the prime p is of a “special” form for an elliptic curve,
define in mirdef.h MR_SPECIAL. Edit mrcomba.tpl to insert “special” code for modular
reduction — it’s quite easy and you will find examples there already. Run mex as
before, and rebuild MIRACL again.

For processors other than the ARM, the basic procedure is the same. A C-only build
is always possible. To go faster you will need to create a .mcs file for your processor,
and then you can proceed as above.



An alternative is to do a C-only build and then go in and optimise the generated
assembly language. The time-critical routines are usually multiply () and redc()
which can be found in mrarth2.c and mrmonty.c.

This will probably not be as fast as the highly optimised approach outlined above.

NOTE: There is a nasty ARM compiler bug in the version I am using. It can cause
problems, if for example using the C-only macros from c.mcs or cl.mcs.

Use this program to illustrate the bug, or to see if your compiler is affected.

/* Short program to illustrate ARM compiler bug
works fine with -00, gets wrong answer for -01 and -02 optimization
Answer should be Oxffffffff00000001 but it gets Ox1

*/

#include <stdio.h>

int main()

{
unsigned long long x;
unsigned long a,b;
a=0;
b=0xFFFFFFFF;
x=(unsigned long long)a-b;
printf("x= %1lx\n",x);
return O;

Another problem may arise with systems that do not fully support unsigned long
long arithmetic (you may be getting linker errors with names like __udivdi3 functions
not found). In this case for a C only build delete the #define MR_NOASM from mirdef.h
and use the Blakely-Sloan versions of mrmuldiv and mrmuldvm with the standard
versions of mrmuldvd and mrmuldvd2 (from mrmuldv.ccc) to create a file mrmuldv.c
which should then be included in the library. Also insert an #undef mr_dltype at
the start of mrxged.c.

Borland

You have just downloaded the “free” and excellent Borland Compiler from http:
//www.borland.com, and you want to compile the MIRACL library and create some
applications. If so, read on. ..

If you have the TASM assembler (which is not free) then unzip all the MIRACL files
into one directory, read the comments at the start of bc32doit.bat and if happy execute
the batch file. Some example commands to build some representative applications
are at the end of the batch file.

If you don’t have TASM then you can still build a C-only library (which will be
slower). Proceed as follows.

1. Unzip MIRACL into a single directory — do not tick the “Use Folder Names”
box if using WinZip

2. Use this header for mirdef.h. Note that Borland now supports a 64-bit data
type called __int64 (compatible with Microsoft C)


http://www.borland.com
http://www.borland.com

#define MIRACL 32

#define MR_LITTLE_ENDIAN

#define mr_utype int

#define MR_IBITS 32

#define MR_LBITS 32

#define mr_unsign32 unsigned int
#define mr_dltype __int64

#define mr_unsign64 unsigned __int64
#define MR_NOASM

#define MR_FLASH 52

#define MAXBASE ((mr_small)1<<(MIRACL-1))

3. Copy all the MIRACL header files into the directory where Borland C puts its
standard headers. This may be c:
borland
bccb5
include

4. Edit bc32doit.bat. Read the comments at the start. Remove all -B compiler
flags (these invoke TASM, and you haven’t got TASM). Delete all references
to mrmuldv.c

5. Run the batch file.

Itanium

The Itanium processor is now fully supported using Intel C/C++ Compiler.

Use a header file like

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

MR_LITTLE_ENDIAN

MIRACL 64

mr_utype long

MR_IBITS 32

MR_LBITS 64

mr_unsign32 unsigned int
mr_unsign64 unsigned long
MR_FLASH 52

MAXBASE ((mr_small)1<<(MIRACL-1))
BITSINCHAR 8

and create file mrmuldv.c from Itanium source code in mrmuldv.any.

Note that this mrmuldv.c file only implements muldiv(.) and muldvm(.). The other
two functions — the time critical ones — muldvd(.) and muldvd2(.) are inlined —
see miracl.h.

Note that the above header file assumes an LP64-compatible compiler. For an LLP64
compiler, change mr_utype to a 64-bit long long or __int64.

There is also a macro file itanium.mcs — see kemcomba.txt and makemcs.txt.

To build the MIRACL library, extract below into a file itanium and execute

bash itanium



Contents of itanium:

rm miracl.a

icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
icc
ar

ar

ar

ar

ar

ar

ar

r

r
r
r
r
r
r

-I. -c -03 mrcore.c
-I. -c -03 mrarthO.
-I. -c -03 mrarthl.
-I. -c -03 mrarth2.
-I. -c -03 mralloc.
-I. -c -03 mrsmall.
-I. -c -03 mriol.c
-I. -c -03 mrio2.c
-I. -c -03 mrgcd.c
-I. -c -03 mrjack.c
-I. -c -03 mrxgcd.c
-I. -c -03 mrarth3.c
-I. -c -03 mrrand.c
-I. -c -03 mrprime.c
-I. -c¢ -03 mrcrt.c
-I. -c -03 mrscrt.c
-I. -c -03 mrmonty.c
-I. -c -03 mrpower.c
-I. -c -03 mrcurve.c
-I. -c -03 mrfast.c
-I. -c -03 mrshs.c
-I. -c -03 mrshs256.c
-I. -c -03 mrshsb12.c
-I. -c -03 mraes.c
-I. -c -03 mrlucas.c
-I. -c -03 mrstrong.c
-I. -c¢ -03 mrbrick.c
-I. -c -03 mrebrick.c
-I. -c -03 mrecgf2m.c
-I. -c -03 mrflash.c
-I. -c -03 mrfrnd.c
-I. -c -03 mrdouble.c
-I. -c¢ -03 mrround.c
-I. -c -03 mrbuild.c
-I. -c -03 mrflshl.c
-I. -c -03 mrpi.c
-I. -c -03 mrflsh2.
-I. -c -03 mrflsh3.
-I. -c -03 mrflsh4.
-I. -c -03 mrmuldv.
c miracl.a mrcore.o mrarthO.o mrarthl.o mrarth2.o mralloc.o mrsmall.o
miracl.a mriol.o mrio2.o mrjack.o mrgcd.o mrxgcd.o mrarth3.o
miracl.a mrrand.o mrprime.o mrcrt.o mrscrt.o mrmonty.o mrcurve.o
miracl.a mrpower.o mrfast.o mrshs.o mrshs256.o0 mraes.o mrlucas.o
mrstrong.o miracl.a mrflash.o mrfrnd.o mrdouble.o mrround.o
mrbuild.o miracl.a mrflshl.o mrpi.o mrflsh2.o mrflsh3.o mrflsh4.o
miracl.a mrbrick.o mrebrick.o mrecgf2m.o mrshs512.o0 mrmuldv.o
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icc -I. -03 factor.c miracl.a -1lm -o factor
rm mr*.o



Microsoft Visual C++

To create MIRACL applications under Microsoft Windows using Microsoft C++ ver-
sion 6.0, follow these steps. Remember a “Release” build will be faster than a “Debug”
build. For MS VC++ .NET see below.

1. Create a new empty project of type Win32 Console Application”. Give it the
name of the associated main project file, e.g. limlee for limlee.cpp

2. Click on “Project”, and then on “Add to Project”, and then on “Files”

3. Select “library files (.lib)” from the “Files of type” drop-down list. Look for
the precompiled MIRACL library file ms32.lib, and insert it into the project.

4. Add the main project file (e.g. limlee.cpp) into the project.

5. Only if it is a C4++ main project file, also add into the project any other needed
files, like big.cpp/zzn.cpp etc. Those required are specified in the comments at
the start of the main project file, e.g. * Requires: big.cpp zzn.cpp. This
step is not required for C projects.

6. Now click on “Project” and then on “Settings”. Click the C/C++ tab and
select the “preprocessor” category. Find the box “Additional Include Direc-
tories”, and specify a path to the MIRACL header files, mirdef.h/miracl.h/big.h
etc.

7. Make sure that any files needed by the application are available in the directory
from which the application is run. For example *.key *.dss, or *.ecs files

8. Now build and run the project.
To create a new version of the MIRACL library,

1. Compile and run the config.c utility, and rename the generated mirdef.tst to
mirdef.h. Note that Microsoft C has a 64-bit integer data type called __int64

2. Create a new project of type “Win32 Static Library”. Then click on “Finish”.

3. Add in the appropriate files mr*.c. The ones required are those listed in mir-
acl.Ist (also generated by the config utility).

4. Now click on “Project” and then on “Settings”. Click the C/C++ tab and
select the “preprocessor” category. Find the box “Additional Include Directo-
ries”, and specify a path to the MIRACL header files mirdef.h and miracl.h

5. Now build the project and create the MIRACL library.

To create MIRACL applications under Microsoft Windows using Microsoft C++ .NET,
follow these steps.

1. Click on New and Project, and select “Visual C++ Projects”, “Win32”, select
“Win32 Console Project”, and give the project name, for example limlee, for
the limlee.cpp example. Click on Finish.

2. Now things get a little tricky. An empty limlee.cpp file is provided. You must
now cut and paste from the MIRACL provided file limlee.cpp into this one. Note
that the main program is now called _tmain.

3. Click on Project, and on “Add existing Item”, and Select “All files” from the
“Files of type” drop-down list. Look for the precompiled MIRACL library file
ms32.lib, and insert it into the project.



4. Only if it is a C++ main project file, also add into the project any other needed
files, like big.cpp/zzn.cpp etc. Those required are specified in the comments at
the start of the main project file, e.g. * Requires: big.cpp zzn.cpp. This
step is not required for C projects. Use “Project”, and “Add existing Item”.

5. Click on Project and then “Properties”. Open up the C++ Tab, go to “Pre-
compiled Headers”, and select “Not using precompiled headers” from the drop-
down box. Open the “General” Tab, and specify a path to the MIRACL header
files, mirdef.h, miracl.h and big.h etc.

6. Build the project and run it by clicking “Debug” and “Start”. The program
runs to completion and exits.

To create a new version of the MIRACL library, first create a suitable mirdef.h as
above, then

1. Click on New and Project, and select “Visual C+4 Projects”, “Win32”, enter
the name Miracl and click on “Win32 Project” and then OK.

2. Click on “Application Settings”, and then select “Static Library”. Then click
on Finish

3. Add in the appropriate files mr¥*.c. (Project followed by “Add Existing Items”).

4. Click on Project and then “Properties”. Open up the C++ Tab, go to “Pre-
compiled Headers”, and select “Not using precompiled headers” from the drop-
down box. Open the “General” Tab, and specify a path to the MIRACL header
files, mirdef.h and miracl.h

5. Now build the project.
If using MIRACL within an MFC based Win32 project, here are some hints.

1. Build a MIRACL library with MR_NO_STANDARD_IO defined in mirdef.h. The con-
fig.c utility can be used as usual to create a suitable mirdef.h

2. If using the C++ MIRACL classes, don’t forget to change the default project
settings for the MIRACL implementation files such as big.cpp to “not using
pre-compiled headers”.

3. Don’t forget that MIRACL is a C library, not C++. To call MIRACL routines
directly from a C++ program you must:

extern "C"
{

#include "miracl.h"

}

If using C++, its probably preferable to access MIRACL via the C+4 wrapper
classes such as implemented by big.h/big.cpp. See big.h file for more tips.

4. To display a big number, convert it first to a string. See the comments at the
start of big.h

Microsoft Visual C++ 8.0 With Visual C++ V8.0, the supplied library file
ms32.lib will not work, so you will first need to create a new one.

1. Select New Project, Win32 Console Application
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Name: miracl

Location: d:\\myprojects (for example)
Solution name: miracl

Click OK

Click Application settings

Click on Static library.

Disable precompiled headers

Click on Finish

Click on Header Files in the left hand pane
Click on Project, and Add Existing Item

Add miracl.h and mirdef.h from wherever you have unzipped the MIRACL dis-
tribution

Click on Source Files in the left hand pane
Click on Project, and Add Existing Item

Add the following MIRACL source files from the MIRACL distribution to the
project: mraes.c, mralloc.c, mrarthO.c, mrarthl.c, mrarth2.c, mrarth3.c, mrbits.c,

mrbrick.c, mrbuild.c, mrcore.c, mrcrt.c, mrcurve.c, mrdouble.c, mrebrick.c, mrecgf2m.c,

mrfast.c, mrflash.c, mrflshl.c, mrflsh2.c, mrflsh3.c, mrflsh4.c, mrfrnd.c, mrgcd.c,
mriol.c, mrio2.c, mrjack.c, mrlucas.c, mrmonty.c, mrmuldv.c, mrpi.c, mrpower.c,
mrprime.c, mrrand.c, mrround.c, mrscrt.c, mrshs.c, mrshs256.c, mrshs512.c, mrs-
mall.c, mrsroot.c, mrstrong.c, mrxgcd.c, mrzzn2.c.

Then Click on Build miracl. The library is created in directory d:
myprojects

miracl

debug

miracl.lib

Alternatively create a release version in the obvious way (if desired).
Close this project

Again Select New Project, Win32 Console Application

Name: brent

Location: d:\myprojects
Solution name: brent

Click on OK, click on Application Settings, leave it as Console Application,
and again disable precompiled headers.

Click on Finish.

Click on Header Files in the left hand pane

Click on Project, and Add Existing Item

Add miracl.h and mirdef.h from wherever you have unzipped the MIRACL dis-
tribution

Also add zzn.h and big.h (the files required here are indicated in the comment
/* Requires: big.cpp zzn.cpp */ at the start of brent.cpp)

Click on Source Files in the left hand pane

Right click on the automatically generated file brent.cpp, and exclude it from
the project.

Click on Project, and Add Existing Item



26. Add the file brent.cpp from the MIRACL distribution
27. Add the files zzn.cpp and big.cpp from the MIRACL distribution

28. Click on Project, and Add Existing Item. Navigate to wherever the MIRACL
library has been created (d:
myprojects
miracl
debug) and add miracl.lib to the project. Answer No to the dialog that appears.

29. Click on Build brent. The source files are compiled and linked to the MIR-
ACL library. To run the program Click on Debug, and then on Start without
Debugging.

SmartMIPS®)

The SmartMIPS®) is an example of the new generation of 32-bit smart cards. Rather
than support specialised crypographic co-processors, these smart cards deploy en-
hanced instruction sets with instructions specially tailored to the requirements of
multi-precision arithmetic over GF(p) and GF(2™). This is a viable approach due to
the increased speed and power of these devices. (Smart cards are NOT low powered
devices. Power is taken from the card reader, and is thus not particularly limited)

These smart cards also support impressive amounts of ROM, Flash memory, EEP-
ROM and RAM. Nonetheless the environment is heavily constrained compared to a
desktop workstation, or even a PDA or hand-held mobile device.

One major constraint is a limited amount of RAM — typically just 16K bytes. In
this context it does not make sense to divide this limited resource between static
memory, a heap and a stack. Therefore a MIRACL build which requires only a stack
is appropriate. Many big number libraries support elaborate mechanisms so that big
numbers can grow without limit. In contrast MIRACL has always supported fixed
size big numbers, and this is particularly appropriate in this context. By fixing big
number sizes at compile time, memory for big numbers can be allocated very quickly
from the stack, with minimal overhead. To do this define

#define MR_STATIC X

in mirdef.h, where X is the fixed size of the big numbers in 32-bit words.

A file smartmip.mcs is supplied so that optimal assembly language can be generated
for big number modular multiplication, using the MIRACL macro mechanism (see
makemcs.txt and kcmcomba.txt). This also supports very fast GF'(2™) polynomial
multiplication, using a special instruction. By setting

#define MR_COMBA2 X

in mirdef.h, and running the mex utility, very fast code will be generated to the file
mrcomba?2.c, which can be integrated into the MIRACL library. Here X is again the
fixed size of the big numbers in 32-bit words (rounded up).

An example mirdef.h configuration header for implementing a fast elliptic curve cryp-
tosystem over G F(2%%%) might look like this:

/*



*  MIRACL compiler/hardware definitions - mirdef.h
*  Copyright (c) 1988-2006 Shamus Software Ltd.
*/

#define MR_LITTLE_ENDIAN

#define MIRACL 32

#define mr_utype int

#define MR_IBITS 32

#define MR_LBITS 32

#define mr_unsign32 unsigned int
#define mr_dltype long long

#define mr_unsign64 unsigned long long
#define MR_STATIC 9

#define MR_NOASM

#define MR_ALWAYS_BINARY

#define MR_STRIPPED_DOWN

#define MR_GENERIC_MT

#define MR_NO_STANDARD_IO

#define MR_NO_FILE_IO

#define MR_COMBA2 9

#define MAXBASE ((mr_small)1<<(MIRACL-1))
#define MR_BITSINCHAR 8

#define MR_SHORT_OF_MEMORY

SPARC

NOTE: On SPARCs with hardware support for quad-precision long doubles, it may
be optimal to build a MIRACL library using a double underlying type rather than
use the approach described here. See double.txt.

These comments apply to the standard 32-bit SPARC (Version 8) processor with
hardware 32-bit multiplication. For 64-bit SPARC (Version 9) see below.

If developing for the SPARC, or indeed any other new processor, you should first
build a C-only library.

For the SPARC, this mirdef.h header would be appropriate for an integer-only build
of the library.

/*

*  MIRACL compiler/hardware definitions - mirdef.h
*  Copyright (c) 1988-2001 Shamus Software Ltd.

*/

#define MIRACL 32

#define MR_BIG_ENDIAN

#define mr_utype int

#define MR_IBITS 32

#define MR_LBITS 32

#define mr_dltype long long

#define mr_unsign32 unsigned int

#define mr_unsign64 unsigned long long
#define MAXBASE ((mr_small)1<<(MIRACL-1))



#define MR_NOASM

Assuming that the mirdef.h, miracl.h and mr*.c files are all in the same directory, then
a suitable batch file for building a MIRACL library might look like this:

gcc -I. -c -02
gcc -I. -c -02
gcc -I. -c -02
gcc -I. -c -02
gcc -I. -c -02
gcc -I. -c -02
gcc -I. -c -02
gcc -I. -c -02
gcc -I. -c -02
gcc -I. -c -02
gcc -I. -c -02
gcc -I. -c -02
gcc -I. -c -02
gcc -I. -c -02
gcc -I. -c -02
gcc -I. -c -02
gcc -I. -c -02
gcc -I. -c -02
gcc -I. -c -02
gcec -I. -c -02
gcc -I. -c -02
gcc -I. -c -02
gcec -I. -c -02
gcc -I. -c -02
gcc -I. -c -02
gcc -I. -c -02
gcc -I. -c -02
gcc -I. -c -02
gcc -I. -c -02
gcc -I. -c -02
ar rc miracl.a
ar r miracl.a
ar r miracl.a
ar r miracl.a
ar r miracl.a
ar r miracl.a
del mr*.o

mrcore.c
mrarthO.
mrarthl.
mrarth2.
mralloc.
mrsmall.
mriol.c
mrio2.c
mrgcd.c
mrjack.c
mrxgcd.c
mrarth3.c
mrrand.c
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mrprime.c

mrcrt.c

mrscrt.c

mrmonty.c

mrpower.c

mrsroot.c

mrcurve.c

mrfast.c

mrshs.c

mrshs256.c

mrshs512.c

mraes.c

mrlucas.c

mrstrong.c

mrbrick.c

mrebrick.c

mrecgf2m.c

mrcore.o mrarthO.o mrarthl.o mrarth2.o mralloc.o mrsmall.o
mriol.o mrio2.0 mrjack.o mrgcd.o mrxgcd.o mrarth3.o mrsroot.o
mrrand.o mrprime.o mrcrt.o mrscrt.o mrmonty.o mrcurve.o
mrfast.o mrshs.o mraes.o mrlucas.o mrstrong.o mrbrick.o
mrebrick.o mrecgf2m.o mrpower.o

mrshs256.0 mrshs512.0

gcc -1.-02 pk-demo.c miracl.a -o pk-demo

This may be fast enough for you. If its not you can use the assembly language macros
provided in sparc32.mcs for greater speed. See kemcomba.txt.

For faster RSA and DH implementations replace the MR_NOASM definition with MR_KCM
n (where n is usually 4, 8 or 16 — experiment. n*MIRACL must divide the modulus size
in bits exactly, which it will for standard moduli of 1024 bit for example). Compile
and run the utility mex.c

c:\miracl>mex n sparc32 mrkcm



(Yes it’s the same n). Rebuild the MIRACL library, but this time include the modules
mrkcm.c and mrmuldv.c (you can find the latter as mrmuldv.ccc. This standard C
version will do, although the SPARC asm versions from mrmuldv.any are faster. These
would need to be assembled rather than compiled)

For fast GF(p) elliptic curves, replace MR_NOASM with MR_COMBA n. This time 32*n is
exactly the size of the modulus in bits (assuming 32-bit processor).

c:\miracl>mex n sparc32 mrcomba

Rebuild the MIRACL library, but this time include the modules mrcomba.c and mr-
muldv.c.

Still not fast enough? If the prime modulus is of a “special” form, define in mirdef.h
MR_SPECIAL. Edit mrcomba.tpl to insert “special” code for modular reduction — it’s
quite easy and you will find examples there already. Run mex as before, and rebuild
MIRACL again.

For processors other than the SPARC, the basic procedure is the same. A C-only
build is always possible. To go faster you will need to create a .mcs file for your
processor, and then you can proceed as above.

An alternative is to do a C-only build and then go in and optimise the generated
assembly language. The time-critical routines are usually multiply () and redc()
which can be found in mrarth2.c and mrmonty.c.

This will probably not be as fast as the highly optimised approach outlined above.

64-bit SPARC (Version 9). Alas not a “real” 64-bit processor in the sense
that there is no 64x64=128 bit multiply instruction.

The standard C header files mirdef.h should in this case look like

/*

*  MIRACL compiler/hardware definitions - mirdef.h
*  Copyright (c) 1988-2001 Shamus Software Ltd.

*/

#define MIRACL 32

#define MR_BIG_ENDIAN

#define mr_utype int

#define MR_IBITS 32

#define MR_LBITS 32

#define mr_dltype long

#define mr_unsign32 unsigned int

#define mr_unsign64 unsigned long
#define MAXBASE ((mr_small)1<<(MIRACL-1))

#define MR_NOASM

Compile as above, but include compiler flag -m64. Also you may need to change -02
to -01 — when I tried it -02 optimization was broken.

For faster assembly language implementation proceed as above, but this time use
macros from sparc64.mcs.



SSE2

If you have a modern Pentium 4 or clone processor that supports the SSE2 extensions,
then using these instructions can be faster.

The file sse2.mcs is provided as a plug-in alternative for ms86.mcs, and gccsse2.mcs
is provided as an alternative for gcc386.mcs.

Using the COMBA or KCM methods and these provided macros, PCs will execute
big number code up to 60% faster. Ideal for a Pentium 4 based Crypto server. See
kemcomba.txt.

It is the programmer’s responsibility to ensure that their hardware and their compiler
supports SSE2 extensions.

Tested with latest Microsoft (use sse2.mcs) and GCC compilers (V3.3 or greater —
use gcesse2.mcs).

The key instruction is PMULUDQ which multiplies two pairs of 32-bit numbers in a
single instruction. Unfortunately trying to exploit this capability is very difficult.
But even just using it for a single multiplication is faster than the standard x386 MUL
instruction. However SSE2 instructions do not support a carry flag. But the PADDQ
instruction adds 64-bit numbers.

Consider the following trick:

The 64-bit result of a PMULUDQ is written to a 128-bit SSE2 register thus

< 32 bits >

+- + S Hmmmm +
| | | | |
00000000/000000000|  Hi I Lo |
| | | | |
+- + + ——t-- -+
mmmmmmmmmme o 128 bits ——-—--—-------- >

Now shuffle this (using PSHUFD) so it becomes

+- + + e +
| | | I |
00000000 | Hi | 0000000000 | Lo |
| | | I |

+- + + ——+-- -+

Now accumulate (by simple addition) partial products like these (see makemcs.txt) in
an SSE2 register, using the PADDQ instruction

|00000CHi| SumHi |0000000CLo| SumLo |
| | | | |

+- + + + ——+




where CHi and CLo are accumulated carries from each half.

At the bottom of each column of partial products, the sum for the column is SumLo,
and the Carry for the next column is the sum of

+- + + ——t—- -+
| | | | |
| | 0 |0000000CHi|  SumHi |
| | | | |
Fo————— + + e -+
and

Fm————— + + +————- -+
| | | | |
| | 0 | 0 |00000000C1o|
| | | | |
+- + + + -+

This can easily be achieved using the available shift instructions and PADDQ.

Unix

RedHat Linux 6.0+ MIRACL i386 installation. Also works OK for Solaris if its
x386/Pentium based.

1. Unzip the MIRACL.ZIP file using the utility unzip, into an empty directory

unzip -j -aa -L miracl.zip

The -j ignores the directory structure inside MIRACL.ZIP. The -aa converts
all text files to Unix format, and -L ensures that all filenames are lower-case.
Perform a tailored build of the MIRACL library by opening an X-Term, and
typing

bash linux

All the MIRACL applications (except RATCALC) can then be built, as desired.
Remember to link all C applications to the miracl.a library. C++ applications
must be linked as well to one or more of big.o zzn.o ecn.o crt.o flash.o object
files etc. See the xxx.bat files for examples. Some applications that require
floating-point support may also require -1m in the compile command line.

Some programs may require some small changes. For example in schoof.cpp search
for the comment about “platforms”.

Note that Linux already has (a rather pathetic) factor program. To avoid name
clashes you might rename MIRACL’s factor program to facter, or somesuch.



Chapter 3

The User Interface

AN EXAMPLE

/*

*  Program to calculate factorials.
*/

#include <stdio.h>
#include "miracl.h" /* include MIRACL system */

void main()

{
/* calculate factorial of number */
big nf; /* declare "big" variable nf */
int n;
miracl *mip = mirsys(5000, 10);

/* base 10, 5000 digits per big */
nf = mirvar(1); /* initialise big variable nf=1 */
printf("factorial program\n");
printf ("input number n= \n");
scanf ("%d", &n);
getchar();
while (n > 1)

premult(nf, n--, nf); /* nf=n'=n*x(n-1)*...2%1 */
printf("n!= \n");
otnum(nf, stdout); /* output result */
}

This program can be used to quickly calculate and print out 1000! (a 2568-digit
number) in less a second on a 60MHz Intel Pentium-based computer, a task first
performed ‘by H.S. Uhler using a desk calculator and much patience over a period of
several years’ [Knuth73]. Many other example programs are described in Chapter

Any program that wishes to make use of the MIRACL system must have an #include
"miracl.h" statement. This tells the compiler to include the C header file miracl.h
with the main program source file before proceeding with the compilation. This file
contains declarations of all the MIRACL routines available to the user. The small

sub-header file mirdef.h contains hardware/compiler-specific details.
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In the main program the MIRACL system must be initialised by a call to the routine
mirsys, which sets the number base and the maximum size of the big and flash
variables. It also initialises the random number system, and creates several workspace
big variables for its own internal use. The return value is the Miracl Instance Pointer,
or mip. This pointer can be used to access various internal parameters associated
with the current instance of MIRACL. For example to set the ERCON flag, one might
write

mip->ERCON = TRUE;

The initial call to mirsys also initialises the error tracing system which is integrated
with the MIRACL package. Whenever an error is detected the sequence of routine
calls down to the routine which generated the error is reported, as well as the error
itself. A typical error message might be

MIRACL error from routine powltr
called from isprime
called from your program
Raising integer to a negative power

Such an error report facilitates debugging, and assisted us during the development
of these routines. An associated instance variable TRACER, initialised to OFF, if set
by the user to ON, will cause a trace of the program’s progress through the MIRACL
routines to be output to the computer screen.

An instance flag ERNUM, initialised to zero, records the number of the last internal
MIRACL error to have occurred. If the flag ERCON is set to FALSE (the default), an
error message is directed to stdout and the program aborts via a call to the system
routine exit(0). If your system does not supply such a routine, the programmer
must provide one instead. If ERCON is set to TRUE no error message is emitted and
instead the onus is on the programmer to detect and handle the error. In this case
execution continues. The programmer may choose to deal with the error, and reset
ERNUM to zero. However errors are usually fatal, and if ERNUM is non-zero all MIRACL
routines called subsequently will “fall-through” and exit immediately. See miracl.h
for a list of all possible errors.

Every big or flash variable in the users program must be initialised by a call to the
routine mirvar, which also allows the variable to be given an initial small integer
value.

The full set of arithmetic and number-theoretic routines declared in miracl.h may
be used on these variables. Full flexibility is (almost always) allowed in parameter
usage with these routines. For example the call multiply(x,y,z), multiplies the
big variable x by the big variable y to give the result as big variable z. Equally
valid would be multiply(x,y,x), multiply(y,y,x), or multiply(x,x,x). This last
simply squares x. Note that the first parameters are by convention always (usually)
the inputs to the routines. Routines are provided not only to allow arithmetic on big
and flash numbers, but also to allow these variables to perform arithmetic with the
built-in integer and double precision data-types.

Conversion routines are provided to convert from one type to another. For details of
each routine see the relevant documentation in the reference manual and the example
programs of Chapter

Input and output to a file or I/O device is handled by the routines innum, otnum,
cinnum and cotnum. The first two use the fixed number base specified by the user



in the initial call of mirsys. The latter pair work in conjunction with the instance
variable IOBASE which can be assigned dynamically by the user. A simple rule is that
if the program is CPU bound, or involves changes of base, then set the base initially
to MAXBASE (or 0 if a full-width base is possible — see Chapter and use cinnum and
cotnum. If on the other hand the program is I/O bound, or needs access to individual
digits of numbers (using getdig, putdig and numdig), use innum and otnum.

Input and output to/from a character string is also supported in a similar fashion by
the routines instr, otstr, cinstr and cotstr. The input routines can be used to set
big or flash numbers to large constant values. By outputting to a string, formatting
can take place prior to actual output to a file or I/O device.

Numbers to bases up to 256 can be represented. Numbers up to base 60 use as many
of the symbols 0-9, A-Z, a—x as necessary.

A number base of 64 enforces standard base64 encoding. On output base64 numbers
are padded with trailing = symbols if needed, but not otherwise formatted. On input
white-space characters are skipped, and padding ignored. Do not use base64 with
flash numbers. Do not use base64 for outputting negative numbers, as the sign is
ignored.

If the base is greater than 60 (and not 64), the symbols used are the ASCII codes
0-255.

A base of 256 is useful when it is necessary to interpret a line of text as a large integer,
as is the case for the Public Key Cryptography programs described in Chapter[8] The
routines big_to_bytes and bytes_to_big allow for direct conversion from the internal
big format to/from pure binary.

Strings are normally zero-terminated. However a problem arises when using a base
of 256. In this case every digit from 0-255 can legitimately occur in a number. So a
0 does not necessarily indicate the end of the string. On input another method must
be used to indicate the number of digits in the string.

By setting the instance variable INPLEN = 25 (for example), just prior to a call to
innum or instr, input is terminated after 25 bytes are entered. INPLEN is initialised
to 0, and reset to 0 by the relevant routine before it returns.

For example, initialise MIRACL to use bigs of 400 bytes
miracl *mip = mirsys(400, 256);
Internal calculations are very efficient using this base.
Input an ASCII string as a base 256 number. This will be zero-terminated, so no
need for INPLEN.
innum(x, stdin);

Now it is required to input exactly 1024 random bits

mip->INPLEN = 128;
innum(y, stdin);

But we want to see output in HEX



mip->I0BASE = 16;
cotnum(w, stdout);

Now in base64

mip->I0BASE = 64;
cotnum(w, stdout);

Rational numbers may be input using either a radix point (e.g 0.3333) or as a frac-
tion (e.g. 1/3). Either form can be used on output by setting the instance variable
RPOINT=0N or =0FF.



Chapter 4

Internal Representation

Conventional computer arithmetic facilities as provided by most computer language
compilers usually provide one or two floating-point data types (e.g. single and double
precision) to represent all the real numbers, together with one or more integer types
to represent whole numbers. These built-in data-types are closely related to the
underlying computer architecture, which is sensibly designed to work quickly with
large amounts of small numbers, rather than slowly with small amounts of large
numbers (given a fixed memory allocation). Floating-point allows a relatively small
binary number (e.g. 32 bits) to represent real numbers to an adequate precision
(e.g. 7 decimal places) over a large dynamic range. Integer types allow small whole
numbers to be represented directly by their binary equivalent, or in 2’s complement
form if negative. Nevertheless this conventional approach to computer arithmetic has
several disadvantages.

e Floating-point and integer data-types are incompatible. Note that the set of
integers, although infinite, is a subset of the rationals (i.e. fractions), which
is in turn a subset of the reals. Thus every integer has an equivalent floating-
point representation. Unfortunately these two representations will in general
be different. For example a small positive whole number will be represented by
its binary equivalent as an integer, and as separated mantissa and exponent as
a floating-point. This implies the need for conversion routines, to convert from
one form to the other.

e Most rational numbers cannot be expressed exactly (e.g. 1/3). Indeed the
floating-point system can only express exactly those rationals whose denom-
inators are multiples of the factors of the underlying radix. For example
our familiar decimal system can only represent exactly those rational num-
bers whose denominators are multiples of 2 and 5; 1/ is 0.05 exactly, /1 is
0.0476190476190. . .

e Rounding in floating-point is base-dependant and a source of obscure errors.

e The fact that the size of integer and floating-point data types are dictated by
the computer architecture, defeats the efforts of language designers to keep
their languages truly portable.

e Numbers can only be represented to a fixed machine-dependent precision. In
many applications this can be a crippling disadvantage, for example in the new
and growing field of Public-Key cryptography.
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e Base-dependent phenomena cannot easily be studied. For example it would be
difficult to access a particular digit of a decimal number, as represented by a
traditional integer data-type.

Herein is described a set of standard C routines which manipulate multi-precision
rational numbers directly, with multi-precision integers as a compatible subset. Ap-
proximate real arithmetic can also be performed.

The two new data-types are called big and flash. The former is used to store multi-
precision integers, and the latter stores multi-precision fractions as numerator and
denominator in ‘floating-slash’ form. Both take the form of a fixed length array of
digits, with sign and length information encoded in a separate 32-bit integer. The
data type defined as mr_small used to store the number digits will be one of the built
in types, for example int, long or even double. This is referred to as the “underlying

type”.

Both new types can be introduced into the syntax of the C language by the C state-
ments

struct bigtype

{
mr_unsign32 L;
mr_small *d;

};

typedef struct bigtype *big;
typedef struct bigtype *flash;

Now big and flash variables can be declared just like any built-in data type, e.g.
big x, y[10], z[10][10];

Observe that a big is just a pointer. The memory needed for each big or flash
number instance is taken from the heap (or from the stack). Therefore each big or
flash number must be initialised before use, and the required memory assigned to
it.

Note that the user of these data-types is not concerned with this internal representa-
tion; the library routines allow big and flash numbers to be manipulated directly.

The structure of big and flash numbers is illustrated in Figure El

These structures combine ease of use with representational efficiency. A denominator
of length zero (d = 0), implies an actual denominator of one; and similarly a numer-
ator of length zero (n = 0) implies a numerator of one. Zero itself is uniquely defined
as the number whose first element is zero (i.e. n =d = 0).

Note that the slash in the flash data-type is not in a fixed position, and may ‘float’
depending on the relative size of numerator and denominator.

A flash number is manipulated by splitting it up into separate big numerator and
denominator components. A big number is manipulated by extracting and operating
on each of its component integer elements. To avoid possible overflow, the numbers
in each element are normally limited to a somewhat smaller range than that of the
full word-length, e.g. 0 to 32767 (= 2'® — 1) on a 16-bit computer. However with
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Figure 4.1: Structure of big and flash data-types where s is the sign of the
number, n and d are the lengths of the numerator and denominator respectively,
and LSW and MSW mean ‘Least significant word’” and ‘Most significant word’
respectively

careful programming a full-width base of 2'® can also be used, as the C language does
not report a run-time error on integer overflow [Scott89b].

When the system is initialised the user specifies the fixed number of words (or bytes)
to be assigned to all big or flash variables, and the number base to be used. Any
base can be used, up to a maximum which is dependant on the wordlength of the
computer used. If requested to use a small base b, the system will, for optimal effi-
ciency, actually use base bn, where n is the largest integer such that bn fits in a single
computer word. Programs will in general execute fastest if a full-width base is used
(achieved by specifying a base of 0 in the initial call to mirsys). Note that this mode
may be supported by extensive in-line assembly language for certain popular com-
piler /processor combinations, in certain time-critical routines, for example if using
Borland/Turbo C with an 80x86 processor. Examine, for example, the source code
in module mrarthl.c.

The encoding of the sign and numerator and denominator size information into a sin-
gle word is possible, as the C language has standard constructs for bit manipulation.



Chapter 5

Implementation

No great originality is claimed for the routines used to implement arithmetic on the
big data-type. The algorithms used are faithful renditions of those described by
Knuth [Knuth81]. However some effort was made to optimise the implementation
for speed. At the heart of the time-consuming multiply and divide routines there
is, typically, a need to multiply together a digit from each operand, add in a ‘carry’
from a previous operation, and then separate the total into a digit of the result, and
a ‘carry’ for the next operation. To illustrate consider this base 10 multiplication:

8723536221
x9
78511825989

To correctly process the column with the 5 in it, we multiply 5 x 9 = 45, add in the
‘carry’ from the previous column (a 3), to give 48, keep the 8 as the result for this
column, and carry the 4 to the next column.

This basic primitive operation is essentially the calculation of the quotient (ab+c)/m
and its remainder. For the example above a = 5, b = 9, ¢ = 3 and m = 10. This
operation has surprisingly universal application, and since it lies at the innermost
loop of the arithmetic algorithms, its efficient implementation is essential.

There are three main difficulties with a high-level language general base implemen-
tation of this MAD (Multiply, Add and Divide) operation.

e [t will be slow.

e Quotient and remainder are not available simultaneously as a result of the
divide operation. Therefore the calculation must be essentially done twice,
once to get the quotient, and once for the remainder.

e Although the operation results in two single digit quantities, the intermediate
product ab + ¢ may be double-length. Indeed such a Multiply-Add and Divide
routine can be used on all occasions when a double-length quantity would be
required by the basic arithmetic algorithms. Note that the C language is blessed
with a ‘long’ integer data-type which may in fact be capable of temporarily
storing this product.

For these reasons it is best to implement this critical operation in the assembly lan-

guage of the computer used, although a portable C version is possible. At machine-
code level a transitory double-length result can often be dealt with, even if the C long
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data-type is not itself double-length (as is the case for most C compilers as imple-
mented on 32-bit computers, for which ints and longs are both 32-bit quantities).
For further details see the documentation in the file mrmuldv.any.

A criticism of the MIRACL system might be its use of fixed length arrays for its
big and flash data types. This was done to avoid the difficult and time-consuming
problems of memory allocation and garbage collection, which would be needed by a
variable-length representation. However it does mean that when doing a calculation
on big integers that the results of all intermediate calculations must be less than or
equal to the fixed size initially specified to mirsys.

In practise most numbers in a stable integer calculation are of more or less the same
size, except when two are multiplied together in which case a double-length interme-
diate product is created. This is usually immediately reduced again by a subsequent
divide operation. A classic example of this would be in the Pollard-Brent factoring
program (Chapter .

Note that this is another manifestation, on a macro level, of the problem mentioned
above. It would be a pity to have to specify each variable to be twice as large
as necessary, just to cope with these occasional intermediate products. For this
reason a special Multiply, Add and Divide routine mad has been included in the
MIRACL library. It has proved very useful when implementing large programs (like
the Pomerance-Silverman-Montgomery factoring program, Chapter [§)) on computers
with limited memory.

As well as the basic arithmetic operations, routines are also provided:

1. to generate and test big prime numbers, using a probabilistic primality test
[Knuth81]

2. to generate big and flash random numbers, based on the subtract-with-borrow
generator [Marsaglia]. Note however that the basic random number generator
implemented internally is not cryptographicly secure. In a real cryptographic
application it would not be adequate. A Cryptographicly strong generator is
provided in the module mrstrong.c

3. to calculate powers and roots

4. to implement both the normal and extended Euclidean GCD (Greatest Com-
mon Divisor) algorithm [Knuth81]

5. to implement the ‘Chinese Remainder Theorem’ [Knuth81], and to calculate
the Jacobi Symbol [Reisel].

6. to multiply extremely large numbers, using the Fast Fourier Transform method
[Pollard71].

When performing extensive modular arithmetic, a time-critical operation is that of
‘Modular Multiplication’, that is multiplication of two numbers followed by reduction
to the remainder when divided by a fixed n, the modulus. One obvious solution
would be to use the mad routine described above. However Montgomery [Monty85]
has proposed an alternative method. This requires that numbers are first converted
to a special n-residue form. However once in this form modular multiplication is
somewhat faster, using a special routine that requires no division whatsoever. When
the calculation is complete, the answers can be converted back to normal form. Note
that modular addition and subtraction of n-residues proceeds as usual, using the
same routines as used for normal arithmetic. Given the requirement for conversion of
variables to/from n-residue format, Montgomery’s method should only be considered
when a calculation requires an extensive amount of modular arithmetic using the



same modulus. It is in fact much more convenient to use in a C4++ environment,
which hides these difficult details. See Chapter [7

Montgomery arithmetic is used internally by many of the MIRACL library routines
that require extensive modular arithmetic, such as the highly optimised modular
exponentiation function powmod, and those functions which implement GF(p) Elliptic
Curve arithmetic. Details can be found in the reference manual.

For the fastest possible modular arithmetic, one must alas resort to assembly lan-
guage, and to methods optimised for a particular modulus, or moduli of a particular
size. A number of different techniques are supported and can be used. The first
two methods, the Comba and KCM methods, are implemented in the files mrcomba.c
and mrkcm.c respectively. These files are created from template files mrcomba.tpl and
mrkcm.tpl by inserting macros defined in a .mcs file. This is done automatically using
the supplied macro expansion utility mex. Compile and run config.c on your target
system to automatically create a suitable mirdef.h and for advise on how to proceed.
Also read kemcomba.txt. To get the fastest possible performance for your embedded
application it is recommended that you should develop your own x.mcs file, if one is
not already provided for your processor/compiler.

Two other rather more experimental techniques are implemented in the files mr87v.c
and mr87f.c for the Intel 80x86 family of processors only, using the Borland C++
compiler.

If conditions are right the appropriate code will be automatically invoked by calling
for example powmod.

It is important to note that the four techniques described require a compiler that
supports in-line assembly. Furthermore the latter two techniques have only been
tested with the Borland C++ V4.5 compiler for the 80x86 family of processors.

The first idea is to completely unravel and reorganise the program loops implicit in
the multiplication and reduction process, as first advocated by [Comba] and modified
by [Scott96]. See mrcomba.tpl. A fixed length modulus must be used and specified at
compile time by defining MR_COMBA to the modulus size (in words) in mirdef.h. This
works well for small to medium size moduli, particularly as used in GF(p) elliptic
curve cryptography. For even more speed, the modular reduction algorithm can be
optimised for a modulus that has a particularly simple form. This can be done by
manually inserting the appropriate code into mrcomba.tpl. Example code for the case
of a modulus p = 2192 — 2% — 1 is given there in the routine comba_redc. To invoke
this special code MR_SPECIAL must be defined in mirdef.h.

This technique can be combined with Karatsuba’s idea for fast multiplication [Knuth81]
to speed up modular multiplication for larger moduli [WeiDai]. This Karatsuba-
Comba-Montgomery (KCM) method is invoked by defining MR KCM in mirdef.h. The
modulus size in computer words is restricted to be equal to MR_KCM*2n for any pos-
itive n (within reason). This is a consequence of using Karatsuba’s algorithm. For
example defining MR_KCM to be 8 on a 32-bit computer allows popular modulus sizes
of 512, 1024, 2048, ... bits.

Another alternative is to exploit the floating point co-processor (if there is one), as its
multiplication instruction is often faster than that of the integer unit [Rubin]. This
is the case for the original Intel Pentium processor whose embedded co-processor
takes only 3 cycles to perform a multiplication, compared with the 10 required for
an integer multiply, although this is not true of the Pentium Pro, II, or III. Also the
co-processor has eight extra registers, and can manipulate 64-bit numbers directly.
These features allow the programmer some extra flexibility, which can be used to
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Figure 5.1: Modular exponentiation on a Pentium Pro200

advantage. Some experimental code has been written in the modules mr87f.c and
mr87v.c, which may be exploited by defining MR_PENTIUM in mirdef.h. Use config.c to
generate mirdef.h — this time the underlying type must be chosen as double. The
module mr87v.c implements compact looping code, which will work with any modulus
less than a certain maximum. The module mr87f.c unrolls the loops for more speed,
but is bulkier and requires a fixed size modulus. Note that these modes of operation
are incompatible with a full-width base, and work best with a number base of (usually)
2%8 or 229 — config.c will work it out for you. Note also that although this method
will speed modular exponentiation on a Pentium, it may actually be slower for most
other 80x86 processors, so use with care. In one test a 2048 bit number was raised
to a 2048-bit power, mod a 2048 bit modulus. This took 2.4 seconds on a 60MHz
Pentium.

Figure [f] illustrates the relative timings required by each method on a Pentium Pro
200MHz processor when compiled with the Borland C 32 bit compiler. The base
line “Classic” method refers to the assembly language code implemented directly
in mrarth2.c and mrmonty.c. The Comba and KCM implementations use assembly
language from the ms86.mcs file. The modulus sizes are on the x axis, and the scaled
time in seconds on the y axis. Note that in the calculation of zy (mod n) it is assumed
that x, y and n are randomly generated, all of same length in bits, and of no special
form. It is assumed for example that the Comb optimisation technique (See [HAC]
and brick.c) does not apply (that is  is a variable). The times shown are correct
for the 8192 bit modulus. Times for smaller moduli are cumulatively scaled up by
8. So the times shown for a 4096 bit modulus should be divided by 8, for a 2048 bit
modulus divided by 64, etc. Completely unrolled code is impracticable for the larger
moduli, and hence timings for these methods are not given.

Note that the Comba method is optimal for moduli of 512 bits and less. This implies
that it will be the optimal technique for fast GF(p) elliptic curve implementations,
and for 1024-bit RSA decryption (which requires two 512-bit exponentiations and
an application of the Chinese Remainder theorem). However these conclusions are
processor-dependent, and may not be globally true. Also the Comba method can gen-
erate a lot of code, and this may be an important consideration in some applications.
In some circumstances (for example when the instruction cache is very small), it may
in fact be advisable to take the working unrolled assembly language and carefully,



manually, re-roll it.

From Version 5.20 of MIRACL, a new data type is supported directly in C. This is
called a zzn2 type, and basically it consists of two bigs in n-residue format

typedef struct

{
big a;
big b;
} zzn2;

where a and b can be considered as the real and imaginary parts respectively. The
value of a zzn2 is a + b, where 7 is the imaginary square root of a quadratic non-
residue. A zzn2 variable is a representation of an element of a quadratic extension
field with respect to a prime modulus p. For example if p = 3 (mod 4), then i can be
taken as v/—1, and the analogy to complex numbers with their real and imaginary
parts becomes clear. They are particularly useful in implementations of cryptographic
pairings. For an example of use, see the example program cardona.cpp which solves
a cubic equation. A default value for the quadratic non-residue (which depends on
the modulus) is stored in the instance variable gqnr. Only the values —1 and —2 are
currently supported.

To assist programmers generating code for a processor in a non-standard environment
(e.g. an embedded controller), the code for dynamic memory allocation is always in-
voked from the module mralloc.c. By default this calls the standard C run-time
functions calloc and free. However it can easily be modified to use an alternative
user-defined memory allocation mechanism. For the same reason all screen/keyboard
output and input is via the standard run-time functions fputc and fgetc. By inter-
cepting calls to these functions, I/O can be redirected to non-standard devices.



Chapter 6

Floating-Slash numbers

The straightforward way to represent rational numbers is as reduced fractions, as
a numerator and denominator with all common factors cancelled out. These num-
bers can then be added, subtracted, multiplied and divided in the obvious way and
the result reduced by dividing both numerator and denominator by their Greatest
Common Divisor. An efficient GCD subroutine, using Lehmers modification of the
classical Euclidean algorithm for multiprecision numbers [Knuth81], is included in
the MIRACL package.

An alternative way to represent rationals would be as a finite continued fraction
[Knuth81]. Every rational number P/, can be written as

1
P_ ao + I
q a +
az +
as ...
or more elegantly as Py = [ao/a1/az/.../an] where the a; are positive integers,
usually quite small.
For example
277

= 0/2/3/6/1/3/3)

Note that the a; elements of the above continued fraction representation are easily
found as the quotients generated as a by-product when the Euclidean GCD algorithm
is applied to p and q.

As we are committed to fixed length representation of rationals, a problem arises when
the result of some operation exceeds this fixed length. There is a necessity for some
scheme of truncation, or rounding. While there is no obvious way to truncate a large
fraction, it is a simple matter to truncate the continued fraction representation. The
resulting, smaller, fraction is called a best rational approximation, or a convergent,
to the original fraction.

Consider truncating 277/s42 = [0/2/3/6/1/3/3]. Simply drop the last element from the
CF representation, giving [0/2/3/6/1/3] = 85/197, which is a very close approximation
t0 277/g42 (error = 0.0018%). Chopping more terms from the CF expansion gives the
successive convergents as 22/s51, 1944, 3/7, 1/2, /1. As the fractions get smaller, the error
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increases. Obviously the truncation rule for a computer implementation should be to
choose the biggest convergent that fits the computer representation.

The type of rounding described above is also called ‘Mediant rounding’. If p/q and /s
are two neighbouring representable slash numbers astride a gap, then their mediant
is the unrepresentable P+7/q . All larger fractions between p/q and the mediant will
round to P/q, and those between 7/s and the mediant will round to 7/s. The mediant
itself rounds to the ‘simpler’ of p/q and /.

This is theoretically a very good way to round, much better than the rather arbitrary
and base-dependent methods used in floating-point arithmetic, and is the method
used here. The full theoretical basis of floating-slash arithmetic is described in detail
by Matula and Kornerup [Matula85]. It should be noted that our flash representa-
tion is in fact a cross between the fixed- and floating-slash systems analysed by Matula
and Kornerup, as our slash can only float between words, and not between bits. How-
ever the characteristics of the flash data-type will tend to those of floating-slash, as
the precision is increased.

The MIRACL routine mround implements mediant rounding. If the result of an arith-
metic operation is the fraction p/y, then the Euclidean GCD algorithm is applied as
before to p and q. However this time the objective is not to use the algorithm to
calculate the GCD per se, but to use its quotients to build successive convergents to
p/q. This process is stopped when the next convergent is too large to fit the flash rep-
resentation. The complete algorithm is given below (Kornerup and Matula [Korn83])

Given p > 0 and ¢ > 1,

b_2 =D x_Q:O Y—2 =1
b,1:q x,1:1 y,1:0,

Now for ¢ = 0,1,... and for b;—1 > 0, find the quotient a; and remainder b; when
b;—2 is divided by b;_1, such that

bi = —aibi—1 + bi—2.
Then calculate
Ti = Qi%Ti—1t+ Ti—2

Yi = QiYi—-1+ Yi—2.

Stop when =i/, is too big to fit the flash representation, and take i-1/,, , as the
rounded result.

If applied to 277/s42, this process will give the same sequence of convergents as stated
earlier.

Since this rounding procedure must be applied to the result of each arithmetic oper-
ation, and since it is potentially rather slow, a lot of effort has been made to optimise
its implementation. Lehmer’s idea of operating only with the most significant piece
of each number for as long as possible [Knuth81] is used, so that for most of the it-
erations only single-precision arithmetic is needed. Special care is taken to avoid the
rounded result overshooting the limits of the flash representation [Scott89a]. The
application of the basic arithmetic routines to the calculation of elementary functions
such as log(x), exp(z), sin(z), cos(z), tan(x) etc., uses the fast algorithms described
by Brent [Brent76].

In many cases the result given by a program can be guaranteed to be exact. This can
be checked by testing the instance variable EXACT, which is initialised to TRUE and is
only set to FALSE if any rounding takes place.



A disadvantage of using a flash type of variable to approximate real arithmetic is
the non-uniformity in gap-size between representable values (Matula and Kornerup
[Matula85]).

To illustrate this consider a floating-slash system which is constrained to have the
product of numerator and denominator less than 256. Observe that the first repre-
sentable fraction less than 1/ in such a system is 15/14, a gap of 1/16. The next fraction
larger than 0/ is /255, a gap of 1/s5. In general, for a k-bit floating-slash system, the
gap size varies from smaller than 27° to a worst case 27%/2. In practise this means
that a real value that falls into one of the larger gaps, will be represented by a fraction
which will be accurate to only half its usual precision. Fortunately such large gaps
are rare, and increasingly so for higher precision, occurring only near simple fractions.
However it does mean that real results can only be completely trusted to half the
given decimal places. A partial solution to this problem would be to represent ratio-
nals directly as continued fractions. This gives a much better uniformity of gap-size
(Kornerup and Matula [Korn85]), but would be very difficult to implement using a
high level language.

Arithmetic on flash data-types is undoubtedly slower than on an equivalent sized
multiprecision floating-point type (e.g. [Brent78]). The advantages of the flash ap-
proach are its ability to exactly represent rational numbers, and do exact arithmetic
on them. Even when rounding is needed, the result often works out correctly, due to
the tendency of mediant-rounding to prefer a simple fraction over a complex one. For
example the roots program (Chapter [§) when asked to find the square root of 2 and
then square the result, comes back with the exact answer of 2, despite much internal
rounding.

WARNING! Do NOT mix flash arithmetic with the built-in double arithmetic. They
don’t mix well. If you decide to use flash arithmetic, use it throughout, and convert
all constants at the start to type flash. Even better specify such constants if possible
as fractions. So (in C++) it is much preferable to write

x = Flash(5, 8); // x =5/8
rather than

x = .625;



Chapter 7

The C++ Interface

Many users of the MIRACL package would be disappointed that they have to calculate

t:az2+az+1

for a flash variable x by the sequence

fmul (x, x, t);
fadd(t, x, t);
fincr(t, 1, 1, t);

rather than by simply
t = xxx + x +1;

Someone could of course use the MIRACL library to write a special purpose C compiler
which could properly interpret such an instruction (see Cherry and Morris [Cherry]
for an example of this approach). However such a drastic step is not necessary. A
superset of C, called C++ has gained general acceptance as the natural successor to
C. The enhancements to C are mainly aimed at making it an object-oriented language.
By defining big and flash variables as ‘classes’ (in C++ terminology), it is possible to
‘overload’ the usual mathematical operators, so that the compiler will automatically
substitute calls to the appropriate MIRACL routines when these operators are used in
conjunction with big or flash variables. Furthermore C++ is able to look after the
initialisation (and ultimate elimination) of these data-types automatically, using its
constructor/destructor mechanism, which is included with the class definition. This
relieves the programmer from the tedium of explicitly initialising each big and flash
variable by repeated calls to mirvar. Indeed once the classes are properly defined and
set up, it is as simple to work with the new data-types as with the built-in double
and int types. Using C++ also helps shield the user from the internal workings of
MIRACL.

The MIRACL library is interfaced to C+-+ via the header files big.h, flash.h, zzn.h,
gf2m.h, ecn.h and ec2.h. Function implementation is in the associated files big.cpp,
flash.cpp, zzn.cpp, gf2m.cpp, ecn.cpp and ec2.cpp, which must be linked into any
application that requires them. The Chinese Remainder Theorem is also elegantly
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implemented as a class, in files crt.h and crt.cpp. See decode.cpp for an example of use.
The Comb method for fast modular exponentiation with precomputation [HAC] is
implemented in brick.h. See brick.cpp for an example of use. The GF(p) elliptic curve
equivalents are in ebrick.h and ebrick.cpp and the GF(2™) elliptic curve equivalents
in ebrick2.h and ebrick2.cpp respectively.

EXAMPLE

/*

*  Program to calculate factorials.
*/

#include <iostream>
#include "big.h"  /* include MIRACL system */

using namespace std;

Miracl precision(500,10); // This makes sure that MIRACL
// is initialised before main()
// is called

void main()

{
/* calculate factorial of number */
Big nf = 1; /* declare "Big" variable nf */
int n;
cout << "factorial program\n";
cout << "input number n= \n";
cin >> n;
while (n > 1)
nf *= (n--); /* nf = n! = nx(n-1)*(n-2)*....3%2%x1 */
cout << "n!= \n" << nf << "\n";
}

Compare this with the C version of Chapter [3] Note the neat use of a dummy class
Miracl used to set the precision of the big variables. Its declaration at global scope
ensures that MIRACL is initialised before main() is called. (Note that this would not
be appropriate in a multi-threaded environment.) When compiling and linking this
program, don’t forget to link in the Big class implementation file big.cpp.

Conversion to/from internal Big format is quite important:

To convert a hex character string to a Big

Big x;
char c[100];

mip->I0BASE = 16;
X =c;

To convert a Big to a hex character string

mip->I0BASE = 16;
c << x;



To convert to/from pure binary, use the from binary() and to_binary() friend func-
tions.

int len;
char c[100];

Big x = from_binary(len, c);

// creates Big x from len bytes of binary in c
len = to_binary(x, 100, c, FALSE);

// converts Big x to len bytes binary in c[100]
len = to_binary(x, 100, c, TRUE);

// converts Big x to len bytes binary in c[100]

// (right justified with leading zeros)

In many of the example programs, particularly the factoring programs, all the arith-
metic is done (mod n). To avoid the tedious reduction (mod n) required after each
operation, a new C++ class ZZn has been used, and defined in the file zzn.h. This
class ZZn (for Z, or the ring of integers (mod n)) has its arithmetic operators defined
to automatically perform the reduction. The function modulo(n) sets the modulus.
In an analogous fashion the C++ class GF2m deals with elements of the field de-
fined over GF(2™). In this case the “modulus” is set via modulo(m,a,b,c), which
also specifies either a trinomial basis ¢ + t* + 1, (and set b = ¢ = 0), or a pen-
tanomial basis t™ + t* + t° +t° 4+ 1. See the IEEE P1363 documentation for details:
http://grouper.ieee.org/groups/1363/draft.html.

Internally the ZZn class uses Montgomery representation. See zzn.h. Note that the
internal implementation of ZZn is hidden from the application programmer, a classic
feature of C+4. Thus the awkward internals of Montgomery representation need not
concern the C++ programmer.

The class ECn defined in ecn.h makes manipulation of points on GF(p) elliptic curves
a simple matter, again hiding all the grizzly details. The class EC2 defined in ec2.h
does the same for GF(2™) elliptic curves.

Almost all of MIRACL’s functionality is accessible from C++. Programming can
often be done intuitively, without reference to the manual, using familiar C syntax
as illustrated above. Other functions are accessed using the ‘obvious’ syntax — as in
for example x=gcd(x,y), or y=sin(x). For more details examine the header files and
example programs.

C++ versions of most of the example programs are included in the distribution media,
with the file extensions .cpp.

One problem with manipulating large objects in C++ is the tendency of the compiler
to generate code to create/destroy/copy multiple temporary objects. By default
MIRACL obtains memory for Big and Flash variables from the heap. This can be
quite time-consuming, and all such objects need ultimately to be destroyed. It would
be faster to assign memory instead from the stack, especially for relative small big
numbers. This can now be achieved by defining BIGS=m at compilation time. For
example if using the Microsoft C++ compiler from the command line:

C:\miracl>cl /02 /GX /DBIGS=50 brent.cpp big.cpp zzn.cpp miracl.lib

Note that the value of m should be the same as or less than the value of n that is
specified in the call to mirsys(n,0) or in Miracl precision=n in the main program.


http://grouper.ieee.org/groups/1363/draft.html

When using finite-field arithmetic, valid numbers are always less than a certain fixed
modulus. For example in the finite field (mod n), the class defined in zzn.h and
zzn.cpp might handle numbers with respect to a 512-bit modulus n, which is set
by modulo(n). In this case one can define ZZNS=16 so that all elements are of a
size 16 x 32 = 512, and are created on the stack. (This works particularly well in
combination with the Comba mechanism described in Chapter [5)

In a similar fashion, when working over the field GF(22%3), one can define GF2MS=9,
so that all elements in the field are stored in a fixed memory allocation of 9 words
taken from the stack.

In these latter two cases the precision n specified in the call to mirsys(n,0) or in
Miracl precision=n in the main program should be at least 2 greater than the m
that specified in the ZZNS=m or GF2MS=m definition.

This is not recommended for program development, or if the objects are very large.
It is only relevant with C4++ programs. See the comments in the sample programs
ibe_dec.cpp and dl.cpp for examples of the use of this mechanism. However the benefits
can often be substantial — programs may be up to twice as fast.

Finally here is a more elaborate C+4 program to implement a relatively complex
cryptographic protocol. Note the convention of using capitalised variables for field
elements.

/*

* Gunthers’s ID based key exchange - Finite field version
See RFC 1824

* r°r variant (with Perfect Forward Security)

*/

*

#include <iostream>
#include <fstream>
#include "zzn.h"

using namespace std;

Miracl precision = 100;

char *IDa
char *IDb

"Identity 1";
"Identity 2";

// Hash function
Big H(char *ID)
{ // hash character string to 160-bit big number
int b;
Big h;
char s[20];
sha sh;
shs_init(&sh);
while (*xID != 0) shs_process(&sh, *ID++);
shs_hash(&sh, s);
h = from_binary(20, s);
return h;

}

int main()



int bits;

ifstream common("common.dss"); // construct file stream
Big p,q,g,x,k,ra,rb,sa,sb,ta,tb,wa,wb;

ZZn G,Y,Ra,Rb,Ua,Ub,Va,Vb,Key;

ZZn A[4];

Big bl4];

long seed;

miracl *mip = &precision;

cout << "Enter 9 digit random number seed = ";

cin >> seed; irand(seed);

// get common data. Its in hex. G°q mod p = 1
common >> bits;

mip->I0BASE = 16;

common >> p >> q >> g;

mip->I0BASE = 10;

modulo(p); // set modulus
G = (ZZn) g;
cout << "Setting up Certification Authority ... " << endl;

// CA generates its secret and public keys

x = rand(q); // CA secret key, 0 < x < q
Y = pow(G, x); // CA public key, Y=G"x
cout << "Visiting CA ...." << endl;

// Visit to CA - a

k = rand(q);

Ra = pow(G, k);

ra = (Big) Ra % q;

sa = (H(IDa) + (k * ra) % q);
sa = (sa * inverse(x, q)) % q;

// Visit to CA - b

k = rand(q);

Rb = pow(G, k);

rb = (Big) Rb % q;

sb = (H(IDb) + (k * rb) % q);
sb = (sb * inverse(x, q)) % q;

cout << "Offline calculations .... " << endl;

// offline calculation - a

wa = rand(q);
Va = pow(G, wa);
ta = rand(q);
Ua = pow(Y, ta);

// offline calculation - b
wb = rand(q);



Vb = pow(G, wb);
tb = rand(q);
Ub = pow(Y, tb);

// Swap ID, R, U, V
cout << "Calculate Key ... " << endl;

// calculate key a
// Key = Vb~wa.Ub"sa.G~ [(H(IDa)*tb)%ql .Rb~[(rb*ta)%ql mod p

rb = (Big) Rb % q;

A[0] = Vb; A[1] = Ub; A[2] = G; A[3] = Rb;

b[0] = wa; b[1] = sa; b[2] (H(IDb) * ta) % q;
b[3] = (rb * ta) % q;

Key = pow(4, A, b); // extended exponentiation
cout << "Key= \n" << Key << endl;

// calculate key - b

ra = (Big) Ra % q;

A[0] = Va; A[1] = Ua; A[2] = G; A[3] = Ra;
b[0] = wb; b[1] = sb; b[2] = (H(IDa) * tb) % q;

b[3] = (ra * tb) % q;

Key = pow(4, A, b); // extended exponentiation
cout << "Key= \n" << Key << endl;

return O;

MIRACL has evolved quite a complex class hierarchy — see the diagram below. Where
possible classes are built directly on top of the C/assembly core. Note the support
for polynomials, power series and extension fields.
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Chapter 8

Example Programs

Note: The programs described here are of an experimental nature, and in many
cases are not completely “finished off”. For further information read the comments
associated with the appropriate source file.

8.1 Simple Programs

hail.c

This program allows you to investigate so-called hailstone numbers, as described by
Gruenberger [Gruen]. The procedure is simple. Starting with any number apply the
following rules:

1. If it is odd, multiply it by 3 and add 1.
2. If it is even, divide it by 2.

3. Repeat the process, until the number becomes equal to 1, in which case stop.

It would appear that for any initial number this process always eventually terminates,
although it has not been proved that this must happen, or that the process cannot
get stuck in an infinite loop. What goes up, it seems, must come down. Try the
program for an initial value of 27. Then try it using much bigger numbers, like
10709980568908647 (which has interesting behaviour).

palin.c

This programs allows one to investigate palindromic reversals [Gruen]. A palindromic
number is one which reads the same in both directions. Start with any number and
apply the following rules.

1. Add the number to the number obtained by reversing the order of the digits.
Make this the new number.

2. Stop the process when the new number is palindromic.

It appears that for most initial numbers this process quickly terminates. Try it for
89. Then try it for 196.
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mersenne.c

This program attempts to generate all prime numbers of the form 2 — 1. The largest
known primes have always been of this form because of the efficiency of this Lucas-
Lehmer test. The routine fft_mult is used, as it is faster for very large numbers.

8.2 Factoring Programs

Six different Integer Factorisation programs are included, covering all modern ap-
proaches to this classical problem. For more background and information on the
algorithms used, see [Scott89c].

brute.c

This program attempts to factorise a number by brute force division, using a table
of small prime numbers. When attempting a difficult factorisation it makes sense to
try this approach first. Factorise 12345678901234567890 using this program. Then
try it on bigger random numbers.

brent.c

This program attempts to factorise a number using the Brent-Pollard method. This
method is faster at finding larger factors than the simple-minded brute force approach.
However it will not always succeed, even for simple factorisations. Use it to factorise
R17, that is 11111111111111111 (seventeen ones). Then try it on larger numbers that
would not yield to the brute force approach.

pollard.c

Another factoring program, which implements Pollard’s (p-1) method, specialises in
quickly finding a factor p of a number N for which p — 1 has itself only small factors.
Phase 1 of this method will work if all these small factors are less than LIMIT1. If
Phase 1 fails then Phase 2 searches for just one final larger factor less than LIMIT2.
The constants LIMIT1 and LIMIT2 are set inside the program.

williams.c

This program is similar to Pollards method, but can find a factor p of N for which
p + 1 has only small factors. Again two phases are used. In fact this method is
sometimes a p + 1 method, and sometimes a p — 1 method, so several attempts are
made to hit on the p+ 1 condition. The algorithm is rather more complex than that
used in Pollards method, and is somewhat slower.



lenstra.c

Lenstra [Monty87] has discovered a new method of factorisation, generically similar
to the Pollard and Williams methods, but potentially much more powerful. It works
by randomly generating an Elliptic Curve, which can then be used to find a factor p
of N, for which p + 1 — § has only small factors, where ¢ depends on the particular
curve chosen. If one curve fails then another can be tried, an option not possible
with the Pollard/Williams methods. Again this is a two phase method, and although
it has very good asymptotic behaviour, it is much slower than the Pollard/Williams
methods for each iteration.

gsieve.c

This is a sophisticated Pomerance-Silverman-Montgomery [Pomerance], [Silverman]
factoring program. which factors F'7 = 2'2® 4+ 1

340282366920938463463374607431768211457

in less than 30 seconds, running on a 60MHz Pentium-based computer. When this
number was first factored, it took 90 minutes on an IBM 360 mainframe (Morrison
and Brillhart [Morrison]), albeit using a somewhat inferior algorithm.

Its speciality is factoring all numbers (up to about sixty digits long), irrespective
of the size of the factors. If the number to be factored is NN, then the program
actually works with a number kN, where k is a small Knuth-Schroepel multiplier.
The program itself works out the best value of k to use. Internally, the program uses
a ‘factor base’ of small primes. The larger the number, the bigger will be this factor
base. The program works by accumulating information from a number of simpler
factorisations. As it progresses with these it prints out working. ..n. When it thinks
it has enough information it prints out trying, but these tries may be premature
and may not succeed. The program will always terminate before the number n in
working. . .n reaches the size of the factor base.

This program uses much more memory than any of the other example programs,
particularly when factoring bigger numbers. The amount of memory that the program
can take is limited by the values defined for MEM, MLF and SSIZE at the beginning of the
program. These limit the number of primes in the factor base, the number of ‘larger’
primes used by the so-called large-prime variation of the algorithm, and the sieve size
respectively. They should be increased if possible, or reduced if your computer has
insufficient memory. See [Silverman] for more details.

Use gsieve to factor 10000000000000000000000000000000009 (thirty-five digits).

factor.c

This program combines the above algorithms into a single general purpose program
for factoring integers. Each method is used in turn in the attempt to extract factors.
The number to be factored is given in the command line, as in factor 11111111111.
The number can alternatively be specified as a formula, using the switch -f, as in
factor -f (10#11-1)/9. The symbol # here means ‘to the power of’ (# is used
instead of as the latter symbol has a special meaning for DOS on an IBM PC). Type
factor on its own for a full description of this and other switches that can be used to
control the input/output of this program.



8.3 Discrete Logarithm Programs

Two programs implement Pollards algorithms [Pollard78] for extracting discrete log-
arithms. The discrete logarithm problem is to find x given y, » and n in

y=r" (mod n)

The above is a good example of a one-way function. It is easy to calculate y given
x, but apparently extremely difficult to find = given y. Pollard’s algorithms however
perform quite well under certain circumstances, if x is known to be small or if n is a
prime p for which p — 1 has only small factors.

kangaroo.c

This program finds x in the above, assuming that x is quite small. The value of
r is fixed (at 16), and the modulus n is also fixed inside the program. Initially a
‘trap’ is set. Subsequently the discrete logarithm can be found (almost certainly) for
any number, assuming its discrete logarithm is less than a certain upper limit. The
number of steps required will be approximately the square root of this limit.

genprime.c

A prime number p with known factorisation of p — 1 is generated by this program,
for use by the index.c and identity.c programs described below. The factors of p — 1
are output to a file prime.dat.

index.c

This program implements Pollard’s rho algorithm for extracting discrete logarithms,
when the modulus n in the above equation is a prime p, and when p — 1 has only
relatively small factors. The number of steps required is a function of the square root
of the largest of these factors.

8.4 Public-Key Cryptography

Public Key Cryptography is a two key cryptographic system with the very desirable
feature that the encoding key can be made publicly available, without weakening
the strength of the cipher. The first example program demonstrates many popular
public-key techniques. Then two functional Public-Key cryptography systems, whose
strength appears to depend on the difficulty of factorisation, are presented. The first
is the classic RSA system (Rivest, Shamir and Adleman [RSA]). This is fast to encode
a message, but painfully slow at decoding. A much faster technique has been invented
by Blum and Goldwasser. This probabilistic Public Key system is also stronger than
RSA in some senses. For more details see [Brassard], who describes it as ‘the best
that academia has had to offer thus far’. For both methods the keys are constructed
from ‘strong’ primes to enhance security. Closely associated with PK Cryptography,
is the concept of the Digital Signature. A group of example programs implement the
Digital Signature Standard, using classic finite fields and elliptic curves over both the
fields GF(p) and GF(2™).



pk-demo.c

This program carries out a 1024-bit Diffie-Hellman key exchange, and then another
Diffie-Hellman type key exchange, but this time based on a 160-bit prime and an ellip-
tic curve. Next a test string is encrypted and decrypted using the El Gamal method.
The program finishes with a 1024 bit RSA encryption/decryption of the same string.
For a good description of all these techniques see [Stinson]. Anyone attempting to
implement a PK system using MIRACL is strongly encouraged to examine this file,
and its C++ counter-part pk-demo.cpp

bmark.c/imratio.c

The benchmarking program bmark.c allows the user to quickly determine the time
that will be required to implement any of the popular public key methods. It can be
compiled and linked with any of the variants of the MIRACL library, as specified in
mirdef.h, to determine which gives the best performance on a particular platform for a
particular PK method. The program imratio.c when compiled and run calculates the
significant ratios S/M, I/M and J/M, where S is the time for a modular squaring,
M the time for a modular multiplication, I the time for a modular inversion, and J
the time for a Jacobi symbol calculation.

genkey.c

This program generates the ‘public’ encoding key and ‘private’ decoding keys that are
necessary for both the original Rivest-Shamir-Adleman PK system and the superior
Blum-Goldwasser method [Brassard]. These keys can take a long time to generate, as
they are formed from very large prime numbers, which must be generated carefully
for maximum security.

The size of each prime in bits is set inside the program by a #define. The security of
the system depends on the difficulty of factoring the encoding ‘public’ key, which is
formed from two such large primes. The largest numbers which can be routinely fac-
tored using hundreds of powerful computers are 430 bits long (1996). So a minimum
size of 512 bits for each prime gives plenty of security (for now!)

After this program has run, the two keys are created in files PUBLIC.KEY and PRI-
VATE.KEY.

encode.c

Messages or files may be encoded with this program, which uses the ‘public’ encoding
key from the file PUBLIC.KEY, generated by the program genkey, which must have
been run prior to using this program. When run, the user is prompted for a file to
encipher. Either supply the name of a text file, or press return to enter a message
directly from the keyboard. In the former case the encoded output is sent to a file
with the same name, but with the extension .RSA. In the latter case a prompt is
issued for an output filename, which must be given. Text entered from the keyboard
must be terminated by a CONTROL-Z (end-of-file character). Type out the encoded
file and be impressed by how indecipherable it looks.



decode.c

Messages or files encoded using the RSA system may be decoded using this program,
which uses the ‘private’ decoding key from the file PRIVATE.KEY generated by the
program genkey which must have been run at some stage prior to using this program.

When run, the user is prompted for the name of the file to be decoded. Type in the
filename (without an extension — the program will assume the extension .RSA) and
press return. Then the user is asked for an output filename. Either supply a filename
or press return, in which case the decoded output will be sent straight to the screen.
A problem with the RSA system becomes immediately apparent — decoding takes
quite a relatively long time! This is particularly true for larger key sizes and long
messages.

enciph.c

This program works in an identical fashion to the program ‘encode’, except that it
prompts for a random seed before encrypting the data. This random seed is then used
internally to generate a larger random number. The encryption process depends on
this random number, which means that the same data will not necessarily produce the
same cipher-text, which is one of the strengths of this approach. As well as creating
a file with a .BLG extension containing the encrypted data, a second small file (with
the .KEY extension) is also produced.

deciph.c

This program works in an identical fashion to the program ‘decode’. However it has
the advantage that it runs much more quickly. There will be a significant initial delay
while a rather complex calculation is carried out. This uses the private key and the
data in the .KEY file to recover the large random number used in the encryption
process. Thereafter deciphering is as fast as encipherment.

dssetup.c

A standard method for digital signature has been proposed by the American National
Institute of Standards and Technology (NIST), and fully described in the Digital
Signature Standard [DSS]. This program generates a prime ¢, another much larger
prime p = 2ng+ 1, (where n is random) and a generator g. This information is made
common to all. This program generates the common information {p, ¢, g} into a file
common.dss.

limlee.c

It has been shown by Lim and Lee [LimLee] that for certain Discrete Logarithm based
protocols (but not for the Digital Signature Standard) there is a weakness associated
with primes of the kind generated by the dssetup.c program described above. To
avoid these problems they recommend that p is of the form p = 2pipaps---q+ 1,
where the p; are primes greater than g. This program generates the values {p,q, g}
into a file common.dss, and can be used in place of dssetup.c. It is a little slower.



dssgen.c

Each individual user who wishes to digitally sign a computer file randomly generates
their own private key & < ¢ and makes available a public key y = ¢ (mod p). The
security of the system depends on the sizes of p and ¢ (at least 512 bits and 160 bits
respectively). This program generates a single public/private key pair in the files
public.dss and private.dss respectively.

dssign.c

This program uses the private key from private.dss to ‘sign’ a document stored in
a file. First the file data is ‘hashed’ down to a 160 bit number using SHA, the
Standard Hash Algorithm. This is also specified by the NIST and is implemented in
the provided module mrshs.c. The 160-bit hash is duly ‘signed’ as described in [DSS],
and the signature, in the form of two 160-bit numbers, written out to a file. This file
has the same name as the document file, but with the extension .dss.

dssver.c

This program uses the public key from public.dss to verify the signature associated
with a file, as described in [DSS].

ecsgen.c, ecsign.c, ecsver.c

The Digital Signature technique can also be implemented using Elliptic Curves over
the field GF(p) [Jurisic]. Common domain information in the order {p, A, B,q, X, Y}
is extracted from the file common.ecs created using one of the point-counting algo-
rithms described below. These values specify an initial point (X,Y’) on an elliptic
curve y°> = z® + Az + B (mod p) which has ¢ points on it. The advantages are a
much smaller public key for the same level of security. Smaller numbers can be used
as the discrete logarithm problem is apparently much more difficult in the context of
an elliptic curve. This in turn implies that elliptic curve arithmetic is also potentially
faster. However the use of smaller numbers is somewhat offset by the more complex
calculations involved.

This set of programs has the same functionality as those described above for the
standard DSS. Note however that the file extension .ecs is used for all the generated
files. Read the comments in the source files for more information.

ecsgen2.c, ecsign2.c, ecsver2.cpp

These programs provide the same functionality as those provided above, but use ellip-
tic curves defined over the field GF(2™). Domain information in this case is extracted
from the file common2.ecs in the order {m, A, B, ¢, X,Y,a,b,c}, where (X,Y) spec-
ifies an initial point on the elliptic curve y*> = 2® + Az? 4+ B defined over GF(2™).
The parameters of a trinomial or pentanomial basis are also specified, t™ +t* 4+ 1 or
t™ 4t + t° + t° + 1 respectively. In the former case b and care zero. Finally c¢f x ¢
specifies the number of points on the curve, the product of a large prime factor ¢



and a small cofactor ¢f. The latter is normally 2 or 4. The file common2.ecs can be
created by the schoof2 program described below.

cm.cpp, schoof.cpp, mueller.cpp, process.cpp, sea.cpp,
schoof2.cpp

A problem with Elliptic curve cryptography is the construction of suitable curves.
This is actually much more difficult than the equivalent problem in the integer fi-
nite field as implemented by the program dssetup.c/dssetup.cpp. One approach is the
Complex Multiplication method, as described in the Annex to the IEEE P1363 Stan-
dard Specifications for Public Key Cryptography (available from the Web). This is
implemented here by the C4++ program cm.cpp and its supporting modules float.cpp,
complex.cpp, flpoly.cpp, poly.cpp, and associated header files.

The program when run uses command line arguments. Type cm on its own to get
instructions. For example

cm -f 2#224-2#96+1 -0 common.ecs

generates the common information needed to implement elliptic curve cryptography
into the file common.ecs.

As an alternative to the CM method, a random curve can be generated, and the
points on the curve directly counted. This is more time-consuming than complex
multiplication, but may lead to more secure, less structured curves. The basic al-
gorithm is due to Schoof [Sch],[Blake] and is only practical due to the use of Fast
Fourier Transform methods [Shoup] for the multiplication/division of large degree
polynomials. See mrfast.c. Its still very slow, much slower than cm. Type schoof on
its own to get instructions. For example

schoof f 2#192-2#64-1 3 35317045537

counts the points on the curve y* = z* — 3z 4 35317045537 (mod 2'9% — 264 — 1),

This curve is randomly selected (actually 35317045537 is my international phone
number). The answer is the prime number

6277101735386680763835789423127240467907482257771524603027
Be prepared to wait, or. ..

Use the suite of programs mueller, process, and sea, which together implement the
superior, but more complex, Schoof-Elkies-Atkin method for point counting. See
[Blake] for details.

First of all the mueller program should be run, to generate the required Modular
Polynomials. This needs to be done just once — ever. The greater your collection
of Modular Polynomials, the greater the size of prime modulus that can be used
for the elliptic curves of interest. Note that this program is particularly hard on
memory resources, as well as taking a long time to run. However after an hour at
most you should have enough Modular Polynomials to start experimenting. As with
all these programs, simply typing the program name without parameters generates
instructions for use. Also be sure to read the comments at the start of the source file,
in this case mueller.cpp.



Next run the process application, which processes the file of raw modular polynomials
output by mueller, for use with a specified prime modulus.

Finally run sea to count the points on the curve, and optionally to create a .ecs file
as described above.

For example:

mueller 0 120 o mueller.raw
process f 65112%2#144-1 i mueller.raw o test160.pol
sea 3 49 i test160.pol

generates all the modular polynomials for primes from 0 to 120, and outputs them to
the file mueller.raw. Then these polynomials are processed with respect to the prime
p = 65112 x 24 — 1, to create the file test160.pol. Finally the main sea application
counts the points on the curve y*> = z* — 3z 449 (mod p).

This may be more complicated to use, but its much faster than schoof.
Read the comments at the start of sea.cpp for more information.

For elliptic curves over GF(2™), the program schoof2 can be used, which is quite
similar to schoof. It is even slower, but just about usable on contemporary hardware.
For example

schoof2 1 52 191 9 o common2.ecs

counts the points on the curve y® + 2y = 2® + 2 + 52, over the field GF(2'%). A
suitable irreducible basis must also be specified, in this case t*°! +¢° + 1. Tables of
suitable bases can be found in many documents, for example in Appendix A of the
IEEE P1363 standard. See [Menezes] for a description of the method.

For more information on building these applications see the files cm.txt, schoof.txt,
schoof2.txt and sea.txt.

crsetup.cpp, crgen.cpp, crencode.cpp, crdecode.cpp

Public key schemes should ideally be immune from adaptive chosen cipher-text at-
tacks, whereby an attacker is able to obtain decryptions of any presented cipher-texts
other than the particular one they are interested in. Recently Cramer and Shoup
[CS] have come up with a Public Key encryption method that is provably immune to
such powerful attacks. The program crsetup creates various global parameters, and
crgen generates one set of public and private keys in the files public.crs and private.crs
respectively. To encrypt an ASCII file called for example fred.txt, run the crencode
program that generates a random session key, and uses it to encrypt the file. This
session key is in turn encrypted by the public key and stored in the file fred.key. The
binary encrypted file itself is stored as fred.crs. To decrypt the file, run the crdecode
program, which uses the private key to recover the session key, and hence decode the
text to the screen.

A couple of points are worth highlighting. First of all the bulk encryption is carried
out using a block cipher method. Such hybrid systems are standard practise, as block
ciphers are much faster than public key methods. The block cipher scheme used is the
new Advanced Encryption Standard block cipher, which is implemented in mraes.c.



Examination of the source code crdecode.cpp reveals that decryption is a two-pass
process. On the first pass the program determines the validity of the cipher-text, and
only after that is known to be valid does the program go on to decrypt the file. So
the decryption procedure will not respond at all to arbitrary bit strings concocted by
an attacker.

brick.c, ebrick.c, ebrick2.c

Certain Cryptographic protocols require the exponentiation of a fixed number g, that
is the calculation of g® (mod n), where g and n are known in advance. In this case
the calculation can be substantially speeded up by a precomputation which generates
a small table of big numbers. The method was first described by Brickell et al
[Brick]. The example program brick.c illustrates the method. The GF(p) elliptic
curve equivalent is provided in ebrick.c and the GF(2™) equivalent in ebrick2.c. In
a typical application the precomputed tables might be generated using one of these
programs (see commented-out code in ebrick2.c), which then might be transferred to
ROM in an embedded program. The embedded program might use a static build of
MIRACL to make use of these tables.

identity.c

This is a program that allows individuals, issued with certain secret information, to
establish mutual keys by performing a calculation involving only the other correspon-
dents publicly known identity. No interchange of data is required [Maurer], and so
this is called Non-Interactive Key Exchange. Note that the ‘publicly known identity’
might, for example, be simply an email address. For a full description see [Scott92].
This example program generates the secret data from the proffered Identity. However
before this program is run, the program genprime.c must be run twice, to generate a
pair of suitable trap-door primes. Copy the output of the program, prime.dat, first
to trapl.dat and then to trap2.dat. The product of these primes will be used as the
composite modulus used for subsequent calculations.

Pairing-Based Cryptography

A number of experimental programs are provided to implement cryptographic pro-
tocols based on pairings. Notably there are examples of Identity-Based Encryption
(IBE) and authenticated key exchange. Read the files pairings.txt, ake.txt and ibe.txt
for details.

8.5 Flash Programs

Several programs demonstrate the use of flash variables. One gives an implementa-
tion of Gaussian elimination to solve a set of linear equations, involving notoriously
ill-conditioned Hilbert matrices. Others show how rational arithmetic can be used to
approximate real arithmetic, in, for example the calculation of roots and 7. The for-
mer program detected an error in the value for the square root of 5 given in Knuth’s
appendix A [Knuth81]. The correct value is

2.2360679774997896964091736687312762354406



The error is in the tenth last digit, which is a 2, and not a 1.

The roots program runs particularly fast when calculating the square roots of single
precision integers, as a simple form of continued fraction generator can be used. In
one test the golden ratio (1 4 +/5)/2 was calculated to 100,000 decimal places in 3
hours of CPU time on a VAX11/780.

The sample program was used to calculate m correct to 1000 decimal places, taking
less than a minute on a 25MHz 80386-based IBM PC to do so.

roots.c

This program calculates the square root of an input number, using Newton’s method.
Try using it to calculate the square root of two. The accuracy obtained depends on
the size of the flash variables, specified in the initial call to mirsys. The tendency
of flash arithmetic to prefer simple numbers can be illustrated by requesting, say,
the square root of 7. The program calculates this value and then squares it, to give
7 again exactly. On your pocket calculator the same result will only be obtained if
clever use is made of extra (hidden) guard digits.

hilbert.c

Traditionally the inversion of ‘Hilbert’ matrices is regarded as a tough test for any
system of arithmetic. This programs solves the set of linear equations Hx = b, where
H is a Hilbert matrix and b is the vector [1,1,1,1,..., 1], using the classical Gaussian
Elimination method.

sample.c

This program is the same as that used by Brent [Brent78] to demonstrate some of
the capabilities of his Fortran Multiprecision arithmetic package. It calculates ,

exp(m4/163/9), and exp(mv/163).

ratcalc.c

As a comprehensive and useful demonstration of flash arithmetic this program sim-
ulates a standard full-function scientific calculator. Its unique feature (besides its
36-digit accuracy) is its ability to work directly with fractions, and to handle mixed
calculations involving both fractions and decimals. By using this program the user
will quickly get a feel for £1ash arithmetic and its capabilities. Note that this program
contains some non-portable code (screen handling routines) that must be tailored to
each individual computer/terminal combination. The version supplied works only on
standard PCs using DOS, or a command prompt window in Windows NT/98.



Chapter 9

Instance variables

These variables are all member of the miracl structure defined in miracl.h. They are
all accessed via the mip — the Miracl Instance Pointer.

BOOL EXACT Initialised to TRUE. Set to FALSE if any rounding takes place during flash
arithmetic.

int INPLEN Length of input string. Must be used when inputting binary data.

int IOBASE The “printable” number base to be used for input and output. May be
changed at will within a program. Must be greater than or equal to 2 and less
than or equal to 256

int IOBSIZ Size of I/O buffer.

BOOL ERCON Errors by default generate an error message and immediately abort the
program. Alternatively by setting mip->ERCON=TRUE error control is left to the
user.

int ERNUM Number of the last error that occurred.
char IOBUFF[] Input/Output buffer.

int NTRY Number of iterations used in probabalistic primality test by isprime. Ini-
tialised to 6.

int *PRIMES Pointer to a table of small prime numbers.

BOOL RPOINT If set to TRUE numbers are output with a radix point. Otherwise they
are output as fractions (the default).

BOOL TRACER If set to ON causes debug information to be printed out, tracing the
progress of all subsequent calls to MIRACL routines. Initialised to OFF.
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Chapter 10

MIRACL Error Messages

MIRACL error messages, diagnosis and response.

10.1 Number base too big for representation

Diagnosis: An attempt has been made to input or output a number using a number
base that is too big. For example outputting using a number base of 2% is clearly
impossible. For efficiency the largest possible internal number base is used, but
numbers in this format should be input/output to a much smaller number base < 256.
This error typically arises when using using innum() or otnum() after mirsys(.,0).

Response: Perform a change of base prior to input/output. For example set the
instance variable IOBASE to 10, and then use cinnum() or cotnum(). To avoid the
change in number base, an alternatively is to initialise MIRACL using something like
mirsys(400,16) which uses an internal base of 16. Now Hex I/O can be performed
using innum() and otnum(). Note that this will not impact performance on a 32-bit
processor, as 8 Hex digits will be packed into each computer word.

10.2 Division by zero attempted

Diagnosis: Self-explanatory

Response: Don’t do it!

10.3 Overflow — Number too big

Diagnosis: A number in a calculation is too big to be stored in its fixed length
allocation of memory.

Response: Specify more storage space for all big and flash variables, by increasing
the value of n in the initial call to mirsys(n,b).
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10.4 Internal Result is Negative

Diagnosis: This is an internal error that should not occur using the high level
MIRACL functions. It may be caused by user-induced memory over-runs.

Response: Report to mike@computing.dcu.ie’

10.5 Input Format Error

Diagnosis: The number being input contains one or more illegal symbols with re-
spect to the current I/O number base. For example this error might occur if I0BASE
is set to 10, and a Hex number is input.

Response: Re-input the number, and be careful to use only legal symbols. Note
that for Hex input only upper-case A-F are permissible.

10.6 Illegal number base

Diagnosis: The number base specified in the call to mirsys() is illegal. For example
a number base of 1 is not allowed.

Response: Use a different number base.

10.7 Illegal parameter usage

Diagnosis: The parameters used in a function call are not allowed. In certain
cases certain parameters must be distinct — for example in divide() the first two
parameters must refer to distinct big variables.

Response: Read the documentation for the function in question.

10.8 Out of space

Diagnosis: An attempt has been made by a MIRACL function to allocate too much
heap memory.

Response: Reduce your memory requirements. Try using a smaller value of n in
your initial call to mirsys(n,b).

10.9 Even root of a negative number

Diagnosis: An attempt has been made to find, for example, the square root of a
negative number.

Response: Don’t do it!

IMight change the domain of the e-mail address


mike@computing.dcu.ie

10.10 Raising integer to negative power

Diagnosis: Self-explanatory.

Response: Don’t do it!

10.11 Integer operation attempted on flash number

Diagnosis: Certain functions should only be used with big numbers, and do not
make sense for flash numbers. Note that this error message is often provoked by
memory problems, where for example the memory allocated to a big variable is
accidentally over-written.

Response: Don’t do it!

10.12 Flash overflow

Diagnosis: This error is provoked by flash overflow or underflow. The result is
outside of the representable dynamic range.

Response: Use bigger flash numbers. Analyse your progam carefully for numerical
instability.

10.13 Numbers too big

Diagnosis: The size of big or flash numbers requested in your call to mirsys() are
simply too big. The length of each big and flash is encoded into a single computer
word. If there is insufficient room for this encoding, this error message occurs.

Response: Build a MIRACL library that uses a bigger “underlying type”. If not
using flash arithmetic, build a library without it — this allows much bigger big
numbers to be used.

10.14 Log of a non-positive number

Diagnosis: An attempt has been made to calculate the logarithm of a non-positive
flash number.

Response: Don’t do it!

10.15 Flash to double conversion failure

Diagnosis: An attempt to convert a flash number to the standard built-in C double
type has failed, probably because the flash number is outside of the dynamic range
that can be represented as a double.

Response: Don’t do it!



10.16 I/0O buffer overflow

Diagnosis: An input output operation has failed because the I/O buffer is not big
enough.

Response: Allocate a bigger buffer by calling set_io buffer_size(.) after calling
mirsys().

10.17 MIRACL not initialised — no call to mirsys()

Diagnosis: Self-explanatory

Response: Don’t do it!

10.18 Illegal modulus

Diagnosis: The modulus specified for use internally for Montgomery reduction, is
illegal. Note that this modulus must not be even.

Response: Use an odd positive modulus.

10.19 No modulus defined

Diagnosis: No modulus has been specified, yet a function which needs it has been
called.

Response: Set a modulus for use internally.

10.20 Exponent too big

Diagnosis: An attempt has been made to perform a calculation using a pre-computed
table, for an exponent (or multiplier in the case of elliptic curves) bigger than that
catered for by the pre-computed table.

Response: Re-compute the table to allow bigger exponents, or use a smaller expo-
nent.

10.21 Number base must be power of 2

Diagnosis: A small number of functions require that the number base specified in
the initial call to mirsys() is a power of 2.

Response: Use another function, or specify a power-of-2 as the number base in the
initial call to mirsys().



10.22 Specified double-length type isn’t

Diagnosis: MIRACL has determined that the double length type specified in mirdef.h
is in fact not double length. For example if the underlying type is 32-bits, the double
length type should be 64 bits.

Response: Don’t do it!

10.23 Specified basis is not irreducible

Diagnosis: The basis specified for GF(2™) arithmetic is not irreducible.

Response: Don’t do it!



Chapter 11

The Hardware/Compiler
Interface

Hardware/compiler details are specified to MIRACL in this header file mirdef.h.

For example:

*  MIRACL compiler/hardware definitions - mirdef.h
* This version suitable for use with most 32-bit

* computers
*
*

Copyright (c) 1988-1999 Shamus Software Ltd.

#define MIRACL_32
#define MR_LITTLE_ENDIAN

/* this may need to be changed */
#define mr_utype int /* the underlying type is usually int *

* but see mrmuldv.any */
#define mr_unsign32 unsigned long

/* 32 bit unsigned type */

#define MR_IBITS 32 /* number of bits in an int */
#define MR_LBITS 32 /* number of bits in a long */

#define MR_FLASH 52 /* delete this definition if integer *
* only version of MIRACL required *
* Number of bits per double mantissa */

#define MAXBASE ((mr_small)1<<(MIRACL-1))

#define MRBITSINCHAR 8
/* Number of bits in char type */

/* #define MR_NOASM #* define this if using C code only  *
* Note: mr_dltype MUST be defined */
/* #define mr_dltype long long
* double-length type */
/*
#define MR_STRIPPED_DOWN * define this to minimize size *
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* of library - all error messages *
* lost! USE WITH CARE - see mrcore.c */

This file must be edited if porting to a new hardware environment. Assembly language
versions of the time-critical routines in mrmuldv.any may also have to be written, if
not already provided, although in most cases the standard C version mrmuldv.ccc can
simply be copied to mrmuldv.c.

It is best where possible to use the mirdef.h file that is generated automatically by
the interactive config.c program.
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